Aggregation of glycerol induced by carbon nanotubes in aqueous solution and its influencing factors

Linlin Liu , Dongxia Zhao , Zhongzhi Yang

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 878 -884.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 878 -884. DOI: 10.1007/s40242-015-5138-7
Article

Aggregation of glycerol induced by carbon nanotubes in aqueous solution and its influencing factors

Author information +
History +
PDF

Abstract

Carbon nanotubes(CNTs) have received wide application and investigation because of their unique electronic, chemical and mechanical properties. But the self-aggregation of CNTs limits their practical application and study. In order to disperse CNTs effectively, polymers, such as polyglycerol and its derivatives, are adopted as dispersants in view of their strong interaction with CNTs. In order to understand the interaction between CNTs and glycerol in water in detail, a series of simulations has been conducted to investigate the interaction between them and analyze the influences of CNTs diameter and temperature. All the analyses indicate that the glycerol molecules are prone to aggregate around CNTs with the addition of CNTs. This is mainly due to hydrophobic interaction. It is confirmed that this aggregation is influenced by CNTs diameter and the temperature to some degree. This work will establish the basis for the exploration of polyglycerol and its derivatives interacting with CNTs and provide an invaluable guide to seek for emergent dispersants for CNTs.

Keywords

Single-walled carbon nanotube(SWCNT) / Glycerol / Spatial distribution function / Groningen machine for chemical simulation / Molecular dynamics simulation

Cite this article

Download citation ▾
Linlin Liu, Dongxia Zhao, Zhongzhi Yang. Aggregation of glycerol induced by carbon nanotubes in aqueous solution and its influencing factors. Chemical Research in Chinese Universities, 2015, 31(5): 878-884 DOI:10.1007/s40242-015-5138-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Iijima S. Nature, 1991, 354(6348): 56.

[2]

Coleman J. N., Khan U., Blau W. J., Gun’ko Y. K. Carbon, 2006, 44(9): 1624.

[3]

Habisreutinger S. N., Leijtens T., Eperon G. E., Stranks S. D., Nicholas R. J., Snaith H. J. Nano. Lett., 2014, 14(10): 5561.

[4]

Li C., Chou T. W. Int. J. Solids. Struct., 2003, 40(10): 2487.

[5]

Bandow S., Asaka S., Saito Y., Rao A., Grigorian L., Richter E., Eklund P. Phys. Rev. Lett., 1998, 80(17): 3779.

[6]

Az'hari S., Ghayeb Y. Mol. Simul., 2013, 40(5): 392.

[7]

Song Y. S., Youn J. R. Carbon, 2005, 43(7): 1378.

[8]

Pasquini L., Sekol R., Taylor A., Pfefferle L. D., Zimmerman J. B. Environ. Sci. Technol., 2013, 47(15): 8775.

[9]

Anirudhan T. S., Alexander S. Biosens. Bioelectron., 2015, 64(0): 586.

[10]

So H. M., Won K., Kim Y. H., Kim B. K., Ryu B. H., Na P. S., Kim H., Lee J. O. J. Am. Chem. Soc., 2005, 127(34): 11906.

[11]

Lacerda L., Bianco A., Prato M., Kostarelos K. Adv. Drug. Deliv. Rev., 2006, 58(14): 1460.

[12]

Tian X. J., Moser M. L., Pekker A., Sarkar S., Ramirez J., Bekyarova E., Itkis M. E., Haddon R. C. Nano. Lett., 2014, 14(7): 3930.

[13]

Anantram M., Leonard F. Rep. Prog. Phys., 2006, 69(3): 507.

[14]

Ouyang M., Huang J. L., Lieber C. M. Acc. Chem. Res., 2002, 35(12): 1018.

[15]

Chen X., Yu X., Liu Y., Zhang J. J. Mol. Graphics Modell., 2013, 83.

[16]

Huo F., Liu Z. Mol. Simul., 2014, 41(4): 271.

[17]

Yang S. B., Shao D. D., Wang X. K., Nagatsu M. RSC Adv., 2014, 4(10): 4856.

[18]

Bergin S. D., Nicolosi V., Streich P. V., Giordani S., Sun Z., Windle A. H., Ryan P., Niraj N. P. P., Wang Z. T. T., Carpenter L. Adv. Mater., 2008, 20(10): 1876.

[19]

Dai H. Surf. Sci., 2002, 500(1): 218.

[20]

Lee J. H., Paik U., Choi J. Y., Kim K. K., Yoon S. M., Lee J., Kim B. K., Kim J. M., Park M. H., Yang C. W. J. Phys. Chem. C, 2007, 111(6): 2477.

[21]

Lee H. Mol. Simul., 2014, 40(4): 335.

[22]

Chen Z. M., Zhang J. N., Guo Y. L., Zhang H., Cao J. J., Xu Q., Wang S. X., Wang B., Liu Z. T. Chem. Res. Chinese Universities, 2014, 30(4): 690.

[23]

Gao Z. Z., Tong H., Chen J. H., Yue S. H., Bai W. L., Zhang X. G., Pan Y. F., Shi M., Song Y. X. Acta Chim. Sinica., 2014, 72(11): 1175.

[24]

Ke P. C. Phys. Chem. Chem. Phys., 2007, 9(4): 439.

[25]

Zong G., Zhang W., Ning N., Tang C., Yang M., Fu Q. Mol. Simul., 2013, 39(12): 1013.

[26]

Kingston C., Zepp R., Andrady A., Boverhof D., Fehir R., Hawkins D., Roberts J., Sayre P., Shelton B., Sultan Y., Vejins V., Wohlleben W. Carbon, 2014, 68: 33.

[27]

Rungnim C., Rungrotmongkol T., Hannongbua S., Okumura H. J. Mol. Graphics Modell., 2013, 39: 183.

[28]

Jung Y. J., Kar S., Talapatra S., Soldano C., Viswanathan G., Li X., Yao Z., Ou F. S., Avadhanula A., Vajtai R. Nano. Lett., 2006, 6(3): 413.

[29]

Yongye A. B., Foley B. L., Woods R. J. J. Phys. Chem. A, 2008, 112(12): 2634.

[30]

Adeli M., Mirab N., Alavidjeh M. S., Sobhani Z., Atyabi F. Polymer, 2009, 50(15): 3528.

[31]

Popeney C. S., Setaro A., Mutihac R. C., Bluemmel P., Trappmann B., Vonneman J., Reich S., Haag R. ChemPhysChem, 2012, 13(1): 203.

[32]

Liu Y., Chipot C., Shao X., Cai W. J. Phys. Chem. B, 2010, 114(17): 5783.

[33]

Uddin N. M., Capaldi F. M., Farouk B. Comp. Mater. Sci., 2012, 53(1): 133.

[34]

Kim S. N., Luo Z., Papadimitrakopoulos F. Nano. Lett., 2005, 5(12): 2500.

[35]

Ma J., Wang J. N., Wang X. X. J. Mater. Chem., 2009, 19(19): 3033.

[36]

Pronk S., Páll S., Schulz R., Larsson P., Bjelkmar P., Apostolov R., Shirts M. R., Smith J. C., Kasson P. M., van der Spoel D. Bioinformatics, 2013, 29(7): 845.

[37]

Santosh M. S., Lyubartsev A. P., Mirzoev A. A., Bhat D. K. J. Phys. Chem. B, 2010, 114(49): 16632.

[38]

Balamurugan K., Baskar P., Mahesh K. R., Das S., Subramanian V. J. Phys. Chem. C, 2012, 116(7): 436.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/