Synthesis and electrochemical properties of highly crystallized CuV2O6 nanowires

Fang Hu , Malin Li , Yingjin Wei , Fei Du , Gang Chen , Chunzhong Wang

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 708 -711.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 708 -711. DOI: 10.1007/s40242-015-5136-9
Article

Synthesis and electrochemical properties of highly crystallized CuV2O6 nanowires

Author information +
History +
PDF

Abstract

CuV2O6 nanowires were prepared via a simple hydrothermal route using NH4VO3 and Cu(NO3)2 as starting materials. The structures and electrochemical properties of CuV2O6 nanowires were characterized by means of X-ray diffraction(XRD), scanning electron microscopy(SEM) and transmission electron microscopy(TEM). The results show that the CuV2O6 nanowires are about 100 nm in width and single crystalline grown along [001] direction. CuV2O6 nanowires delivered a high initial discharge capacity of 435 and 351 mA·h/g at current densities of 50 and 100 mA·h/g, respectively. The electrochemical kinetics of the CuV2O6 nanowires was also investigated by means of electrochemical impedance spectroscopy(EIS) and the poor rate performance was observed, which may be attributed to the low ion diffusion coefficient of the CuV2O6 nanowires.

Keywords

CuV2O6 / Nanowire / Electrochemical property

Cite this article

Download citation ▾
Fang Hu, Malin Li, Yingjin Wei, Fei Du, Gang Chen, Chunzhong Wang. Synthesis and electrochemical properties of highly crystallized CuV2O6 nanowires. Chemical Research in Chinese Universities, 2015, 31(5): 708-711 DOI:10.1007/s40242-015-5136-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aidoudi F. H., Aldous D. W., Goff R. J., Slawin A. M. Z., Attfield J. P., Morris R. E., Lightfoot P. Nat. Chem., 2011, 3: 801.

[2]

Nakano M., Shibuya K., Okuyama D., Hatano T., Ono S., Kawasaki M., Iwasa Y., Tokura Y. Nature, 2012, 487(7408): 459.

[3]

Marley P. M., Banerjee S. Inorg. Chem., 2012, 51(9): 5264.

[4]

Devi S. S., Muthukumaran B., Krishnamoorthy P. Ionics, 2014, 20(12): 1783.

[5]

Li M. L., Yang X., Wang C. Z., Chen N., Hu F., Bie X. F., Wei Y. J., Du F., Chen G. J. Mater. Chem. A, 2015, 3: 586.

[6]

Zhu K., Yan X., Zhang Y. Q., Wang Y. H., Su A. Y., Bie X. F., Zhang D., Du F., Wang C. Z., Chen G., Wei Y. J. Chem. Plus. Chem., 2014, 79: 447.

[7]

Wei Y. J., Ryu C. W., Chen G., Kim K. B. Electrochem. Sol. Stat. Lett., 2006, 9(11): 487.

[8]

Pan A. Q., Zhang J. G., Cao G. Z., Liang S. Q., Wang C. M., Nie Z. M., Arey B. W., Xu W., Liu D. W., Xiao J., Li G. S., Liu J. J. Mater. Chem., 2011, 21: 10077.

[9]

Zhang S. Y., Li W. Y., Li C. S., Chen J. J. Phys. Chem. B, 2006, 110: 24855.

[10]

Qiu C. G., Liu L.N., Du F., Yang X., Wang C. Z., Chen G., Wei Y. J. Chem. Res. Chinese Universities, 2015, 31(2): 270.

[11]

Zhang Y., Pan Y., Liu J., Wang G. L., Cao D. X. Chem. Res. Chinese Universities, 2015, 31(1): 117.

[12]

Wei Y. J., Nam K. W., Chen G., Ryu C. W., Kim K. B. Sol. Stat. Ion., 2005, 176: 2243.

[13]

Cheng F. Y., Chen J. J. Phys. Chem., 2011, 21: 9841.

[14]

Ma H., Zhang S. Y., Ji W. Q., Tao Z. L., Chen J. J. Am. Chem. Soc., 2008, 130: 5361.

[15]

Cao X. Y., Xie J. G., Zhan H., Zhou Y. H. Mater. Chem. Phys., 2006, 98(1): 71.

[16]

Cao J. Q., Wang X. Y., Tang A. P., Wang X., Wang Y., Wu W. J. Alloy. Comp., 2009, 479: 875.

[17]

Shaju K. M., Rao G. V. S., Chowdari B. V. R. Electrochim. Acta, 2003, 48: 2691.

[18]

Liao X. Z., Ma Z. F., Gong Q., He Y. S., Pei L., Zeng L. J. Electrochem. Commun., 2008, 10: 691.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/