A visualized fusion protein based on self-assembly hydrophobin HGFI

Liqiang Zhao , Jinyuan Liu , Dongmin Song , Xiangxiang Wang , Feifei Tai , Haijin Xu , Mingqiang Qiao

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 781 -786.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 781 -786. DOI: 10.1007/s40242-015-5135-x
Article

A visualized fusion protein based on self-assembly hydrophobin HGFI

Author information +
History +
PDF

Abstract

Hydrophobins are a type of small amphipathic proteins with a unique self-assembly property, which can be used to modify material surfaces and adsorb enzymes, antibodies and even cells. In this study, a fusion protein consisting of hydrophobin HGFI and green fluorescent protein(GFP) was successfully obtained from Pichia patoris (P. pastoris). Water contact angle(WCA) measurement proves that the wettability of the surfaces of different materials was changed. We further demonstrated the self-assembly ability of HGFI-GFP, which can be used to disperse the multi-walled carbon nanotubes(MWCNTs). Finally, the adsorption of HGFI-GFP onto the surface of the tissue engineering material poly(ε-caprolactone)(PCL) was evaluated by detecting the fluorescence of the fusion protein itself. The resalt demonstrates that both the basic self-assembly activity of the HGFI domain and the functional activity of the GFP domain were still remained.

Keywords

Self-assembly / Hydrophobin / Fusion protein / Dispersion / Modification

Cite this article

Download citation ▾
Liqiang Zhao, Jinyuan Liu, Dongmin Song, Xiangxiang Wang, Feifei Tai, Haijin Xu, Mingqiang Qiao. A visualized fusion protein based on self-assembly hydrophobin HGFI. Chemical Research in Chinese Universities, 2015, 31(5): 781-786 DOI:10.1007/s40242-015-5135-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wessels J. G., de Vries O. M., Asgeirsdottir S. A., Springer J. Journal of General Microbiology, 1991, 137: 2439.

[2]

Wessels J. G. Advances in Microbial Physiology, 1997, 38: 43.

[3]

Bayry J., Aimanianda V., Guijarro J. I., Sunde M., Latge J. P. PLoS athogens, 2012, 8.

[4]

Kershaw M. J., Thornton C. R., Wakley G. E., Talbot N. J. Molecular Microbiology, 2005, 56: 117.

[5]

Linder M. B. Current Opinion in Colloid & Interface Science, 2009, 14: 356.

[6]

Yu L., Zhang B., Szilvay G. R., Sun R., Janis J., Wang Z., Feng S., Xu H., Linder M. B., Qiao M. Microbiology-Sgm, 2008, 154: 1677.

[7]

Misra R., Li J., Cannon G. C., Morgan S. E. Biomacromolecules, 2006, 7: 1463.

[8]

De Stefano L., Rea I., Armenante A., Giardina P., Giocondo M., Rendina I. Langmuir, 2007, 23: 7921.

[9]

Zhao Z. X., Wang H. C., Qin X., Wang X. S., Qiao M. Q., Anzai J. I., Chen Q. Colloids and Surfaces B-Biointerfaces, 2009, 71: 104.

[10]

Corvis Y., Walcarius A., Rink R., Mrabet N. T., Rogalska E. Analytical Chemistry, 2005, 77: 1626.

[11]

Wang Z. F., Huang Y. J., Niu B. L., Li S., Wang D. D., Xu H. J., Qiao M. Q. Chem. J. Chinese Universities, 2010, 31(10): 2053.

[12]

Hou S., Yang K., Qin M., Feng X. Z., Guan L., Yang Y., Wang C. Biosensors and Bioelectronics, 2008, 24: 912.

[13]

Niu B., Huang Y., Zhang S., Wang D., Xu H., Kong D., Qiao M. Protein Expression Purification, 2012, 83: 92.

[14]

Huang Y., Zhang S., Niu B., Wang D., Wang Z., Feng S., Xu H., Kong D., Qiao M. Colloids and Surfaces B-Biointerfaces, 2013, 101: 364.

[15]

Boeuf S., Throm T., Gutt B., Strunk T., Hoffmann M., Seebach E., Muehlberg L., Brocher J., Gotterbarm T., Wenzel W., Fischer R., Richter W. Acta Biomaterialia, 2012, 8: 1042.

[16]

Schagger H. Nature Protocols, 2006, 1: 17.

[17]

Swayne T. C., Boldogh I. R., Pon L. A. Cytoskeleton Methods and rotocols, 2009, 586: 179.

[18]

Wang Z., Feng S., Huang Y., Li S., Xu H., Zhang X., Bai Y., Qiao M. Protein Expression and Purification, 2010, 72: 19.

[19]

Wang Z., Wang Y., Huang Y., Li S., Feng S., Xu H., Qiao M. Carbon, 2010, 48: 2896.

[20]

Vizcaino-caston I., Wyre C., Overton T. W. Biotechnology Letters, 2012, 34: 178.

[21]

Wang H., Nakata E., Hamachi I. Chembiochem., 2009, 10: 2565.

[22]

Pilbrough W., Munro T. P., Gray P. PLoS One, 2009, 4: e8432.

[23]

Jones J. J., Bridges A. M., Fosberry A. P., Gardner S., Lowes R. R., Newby R. R., James P. J., Hall R. M., Jenkins O. Journal of Biotechnology, 2004, 109: 204.

[24]

Zykwinska A., Guillemette T., Bouchara J. P., Cuenot S. Biochimica et Biophysica Acta(BBA)––Proteins and Proteomics, 2014, 1844: 1233.

[25]

Zangi R., de Vocht M. L., Robillard G. T., Mark A. Biophysical Journal, 2002, 83: 113.

[26]

Wang X., Graveland-Bikker J. F., DeKruif C. G., Robillard G. T. Protein Science, 2004, 13: 815.

[27]

Pedersen M. H., Borodina I., Moresco J. L., Svendsen W. E., Frisvad J. C., Sondergaard I. Applied Microbiology and Biotechnology, 2011, 90: 1926.

[28]

Askolin S., Linder M., Scholtmeijer K., Tenkanen M., Penttila M., de Vocht M. L., Wosten H. A. B. Biomacromolecules, 2006, 7: 1295.

[29]

Panjideh H., Coelho V., Dernedde J., Fuchs H., Keilholz U., Thiel E., Deckert P. M. Bioprocess Biosystems Engineering, 2008, 31: 563.

[30]

Qin M., Wang L. K., Feng X. Z., Yang Y. L., Wang R., Wang C., Yu L., Shao B., Qiao M. Q. Langmuir, 2007, 23: 4469.

[31]

Ding G. B., Liu H. Y., Wang Y., Lu Y. Y., Wu Y., Guo Y., Xu L. Chem. Res. Chinese Universities, 2013, 29(1): 105.

[32]

Winkler M., Raupp Y. S., Kohl L. A., Wagner H. E., Meier M. A. R. Macromolecules, 2014, 47: 2846.

[33]

Wang X., Wang H., Huang Y., Zhao Z., Qin X., Wang Y., Miao Z., Chen Q., Qiao M. Biosensors & Bioelectronics, 2010, 26: 1108.

[34]

Palomo J. M., Penas M. M., Fernandez-Lorente G., Mateo C., Pisabarro A. G., Fernandez-Lafuente R., Ramirez L., Guisan J. M. Biomacromolecules, 2003, 4: 206.

[35]

Chen Z., Zhang J., Guo Y., Zhang H., Cao J., Xu Q., Wang S., Wang B., Liu Z. Chem. Res. Chinese Universities, 2014, 30(4): 696.

[36]

Dai H., Xiao D. L., He H., Yuan D. H., Zhang C. Microchimica Acta, 2014, 182: 895.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/