Ionic liquid as a precursor to synthesize nitrogen- and sulfur-co-doped carbon dots for detection of copper(II) ions

Panpan Xu , Chunfeng Wang , Dong Sun , Yujuan Chen , Kelei Zhuo

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 730 -735.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 730 -735. DOI: 10.1007/s40242-015-5118-y
Article

Ionic liquid as a precursor to synthesize nitrogen- and sulfur-co-doped carbon dots for detection of copper(II) ions

Author information +
History +
PDF

Abstract

A facile approach was reported for the synthesis of nitrogen- and sulfur-co-doped carbon dots(N/S-CDs) by the sulfuric acid carbonization of 1-butyl-3-methylimidazolium 2-amino-3-mercaptopropionic acid(L-cysteine) salt([C4mim][Cys]) ionic liquid. The as-prepared N/S-CDs exhibited a good solubility, excitation-dependent emission behavior, and high resistance to photobleaching. Furthermore, the N/S-CDs were employed as a fluorescent probe for detecting Cu2+ in real water samples with satisfactory recovery.

Keywords

Carbon dot / Fluorescence / Ionic liquid / Cu2+ / co-Doping

Cite this article

Download citation ▾
Panpan Xu, Chunfeng Wang, Dong Sun, Yujuan Chen, Kelei Zhuo. Ionic liquid as a precursor to synthesize nitrogen- and sulfur-co-doped carbon dots for detection of copper(II) ions. Chemical Research in Chinese Universities, 2015, 31(5): 730-735 DOI:10.1007/s40242-015-5118-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baker S. N., Baker G. A. Angew. Chem., Int. Ed., 2010, 49(38): 6726.

[2]

Yang S. T., Cao L., Luo P. G., Lu F., Wang X., Wang H., Meziani M. J., Liu Y., Qi G., Sun Y. P. J. Am. Chem. Soc., 2009, 131(32): 11308.

[3]

Liu H. P., Ye T., Mao C. D. Angew. Chem., Int. Ed., 2007, 46(34): 6473.

[4]

Tang L. B., Ji R. B., Cao X. K., Lin J. Y., Jiang H. X., Li X. M., Teng K. S., Luk C. M., Zeng S. J., Hao J. H., Lau S. P. ACS Nano, 2012, 6(6): 5102.

[5]

Yu S. J., Kang M. W., Chang H. C., Chen K. M., Yu Y. C. J. Am. Chem. Soc., 2005, 127(50): 17604.

[6]

Zhou L., Lin Y. H., Huang Z. Z., Ren J. S., Qu X. G. Chem. Commun., 2012, 48(8): 1147.

[7]

Li H. T., He X. D., Kang Z. H., Huang H., Liu Y., Liu J. L., Lian S. Y., Tsang C. H. A., Yang X. B., Lee S. T. Angew. Chem., Int. Ed., 2010, 49(26): 4430.

[8]

Xu X. Y., Ray R., Gu Y. L., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A. J. Am. Chem. Soc., 2004, 126(40): 12736.

[9]

Zheng L. Y., Chi Y. W., Dong Y. Q., Lin J. P., Wang B. B. J. Am. Chem. Soc., 2009, 131(13): 4564.

[10]

Zhu H., Wang X. L., Li Y. L., Wang Z. J., Yang F., Yang X. R. Chem. Commun., 2009, 5118.

[11]

Li H. T., He X. D., Liu Y., Huang H., Lian S. Y., Lee S. T., Kang Z. H. Carbon, 2011, 49: 605.

[12]

Qiao Z. A., Wang Y. F., Gao Y., Li H. W., Dai T. Y., Liu Y. L., Huo Q. S. Chem. Commun., 2010, 46(46): 8812.

[13]

Bourlinos A. B., Stassinopoulos A., Anglos D., Zboril R., Georgakilas V., Giannelis E. P. Chem. Mater., 2008, 20(14): 4539.

[14]

Wang Y. F., Hu A. J. Mater. Chem. C, 2014, 2(34): 6921.

[15]

Zhu S. J., Zhang J. H., Tang S. J., Qiao C., Wang Y. L., Wang H. Y., Liu X., Li B., Li Y. F., Yu W. L., Wang X. F., Sun H. C., Yang B. Adv. Funct. Mater., 2012, 22(22): 4732.

[16]

Qian Z. S., Shan X. Y., Chai L. J., Ma J. J., Chen J. R., Feng H. ACS Appl. Mater. Interfaces, 2014, 6(9): 6797.

[17]

Wu Z. L., Gao M. X., Wang T. T., Wan X. Y., Zheng L. L., Huang C. Z. Nanoscale, 2014, 6(7): 3868.

[18]

Yang Z., Xu M. H., Liu Y., He F. J., Gao F., Su Y. J., Wei H., Zhang Y. F. Nanoscale, 2014, 6(3): 1890.

[19]

Xiao D. L., Yuan D. H., He H., Gao M. M. J. Lumin., 2013, 140: 120.

[20]

Safavi A., Sedaghati F., Shahbaazi H., Farjami E. RSC Adv., 2012, 2(19): 7367.

[21]

Duan X. C., Li D., Zhang H. L., Ma J. M., Zheng W. J. Chem. Eur. J., 2013, 19(22): 7231.

[22]

Fukumoto K., Yoshizawa M., Ohno H. J. Am. Chem. Soc., 2005, 127(8): 2398.

[23]

Zhang X., Wang F., Huang H., Li H. T., Han X., Liu Y., Kang Z. H. Nanoscale, 2013, 5(6): 2274.

[24]

Nie H., Li M. J., Li Q. S., Liang S. J., Tan Y. Y., Sheng L., Shi W., Zhang S. X. A. Chem. Mater., 2014, 26(10): 3104.

[25]

Sun D., Ban R., Zhang P. H., Wu G. H., Zhang J. R., Zhu J. J. Carbon, 2013, 64: 424.

[26]

Lu Y. Z., Jiang Y. Y., Wei W. T., Wu H. B., Liu M. M., Niu L., Chen W. J. Mater. Chem., 2012, 22(7): 2929.

[27]

Liu S., Tian J. Q., Wang L., Zhang Y. W., Qin X. Y., Luo Y. L., Asiri A. M., Al-Youbi A. O., Sun X. P. Adv. Mater., 2012, 24(15): 2037.

[28]

Wang C. F., Sun D., Zhuo K. L., Zhang H. C., Wang J. J. RSC Adv., 2014, 4(96): 54060.

[29]

Yang S. B., Zhi L. J., Tang K., Feng X. L., Maier J., Müllen K. Adv. Funct. Mater., 2012, 22(17): 3634.

[30]

Chandra S., Patra P., Pathan S. H., Roy S., Mitra S., Layek A., Bhar R., Pramanik P., Goswami A. J. Mater. Chem. B, 2013, 1(18): 2375.

[31]

Qu D., Zheng M., Du P., Zhou Y., Zhang L. G., Li D., Tan H. Q., Zhao Z., Xie Z. G., Sun Z. C. Nanoscale, 2013, 5(24): 12272.

[32]

Wang J. L., Wei J. H., Su S. H., Qiu J. J. New J. Chem., 2015, 39: 501.

[33]

Nawaz F., Wang L., Zhu L. F., Meng X. J., Xiao F. S. Chem. Res. Chinese Universities, 2013, 29(3): 401.

[34]

Li H. R., Li F., Wang G. P., Sun H. J. Lumin., 2014, 156: 36.

[35]

Dong Y. Q., Pang H. C., Yang H. B., Guo C. X., Shao J. W., Chi Y. W., Li C. M., Yu T. Angew. Chem., Int. Ed., 2013, 52(30): 7800.

[36]

Krysmann M. J., Kelarakis A., Dallas P., Giannelis E. P. J. Am. Chem. Soc., 2012, 134(2): 747.

[37]

Wu S. P., Huang R. Y., Du K. J. Dalton Trans., 2009, 24: 4735.

[38]

Guo Y. M., Zhang L. F., Zhang S. S., Yang Y., Chen X. H., Zhang M. C. Biosens. Bioelectron., 2015, 63: 61.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/