In vitro anticancer efficacy by magnetic targeted nanocarrier with local delivery of paclitaxel

Shubin Zhang , Xue Qian , Daihui Zhang , Jinming Zhu , Yi Wu , Yi Guo , Li Xu

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 149 -154.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 149 -154. DOI: 10.1007/s40242-015-5115-1
Article

In vitro anticancer efficacy by magnetic targeted nanocarrier with local delivery of paclitaxel

Author information +
History +
PDF

Abstract

A magnetic nanoparticles-loaded polymeric nanocarrier was developed. Amphiphilic copolymer, methoxy polyethylene glycol-poly(D,L-lactide-co-glycolide)(MPEG-PLGA) could self-assemble to form nanomicelle with the help of emulsion-solvent evaporation technique. This nanocarrier with core-shell structure was loaded with magnetic iron oxide nanoparticles(IONPs) and anticancer drug paclitaxel(PTX). The hydrodynamic diameter of IONPs-PTX-loaded nanocarrier showed an average size of 110 nm with a polydispersity index(PDI) of 0.136, and its zeta potential was (–4.76±0.36) mV. The drug-loading content and encapsulation efficiency were 4.47% and 31.28%, respectively. In vitro drug release experiment was performed and a sustained release profile was observed. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide(MTT) assay indicated that IONPs-PTX-loaded nanocarrier showed comparable cytotoxicity with free paclitaxel. When an external magnetic field was applied, the nanocarrier significantly localized at the target area, demonstrating that the nanocarrier could be used for potential magnetic targeted drug delivery.

Keywords

Magnetic nanoparticle / Paclitaxel / Nanocarrier / Local delivery

Cite this article

Download citation ▾
Shubin Zhang, Xue Qian, Daihui Zhang, Jinming Zhu, Yi Wu, Yi Guo, Li Xu. In vitro anticancer efficacy by magnetic targeted nanocarrier with local delivery of paclitaxel. Chemical Research in Chinese Universities, 2016, 32(1): 149-154 DOI:10.1007/s40242-015-5115-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siegel R. L., Miller K. D., Jemal A. CA-Cancer J. Clin., 2015, 65(1): 5.

[2]

Wang H., Zhao Y., Wu Y., Hu Y. L., Nan K. H., Nie G. J., Chen H. Biomaterials, 2011, 32(32): 8281.

[3]

Iyer A. K., Khaled G., Fang J., Maeda H. Drug Discov. Today, 2006, 11(17): 812.

[4]

Nie S. M., Xing Y., Kim G. J., Simons J. W. Annu. Rev. Biomed. Eng., 2007, 9: 257.

[5]

Obara K., Ishihara M., Ozeki Y., Ishizuka T., Hayashi T., Nakamura S., Saito Y., Yura H., Matsui T., Hattori H., Takase B., Ishihara M., Kikuchi M., Maehara T. J. Control. Release, 2005, 110(1): 79.

[6]

Ruel-Gariepy E., Shive M., Bichara A., Berrada M., Garrec D. L., Chenite A., Leroux J. C. Eur. J. Pharm. Biopharm., 2004, 57(1): 53.

[7]

Dordunoo S. K., Oktaba A. M. C., Hunter W., Min W., Cruz T., Burt H. M. J. Control. Release, 1997, 44(1): 87.

[8]

Brito D. A., Yang Z. Y., Rieder C. L. J. Cell Biol., 2008, 182(4): 623.

[9]

Elkharraz K., Faisant N., Guse C., Siepmann F., Arica-Yegin B., Oger J. M., Gust R., Goepferich A., Benoit J. P., Siepmann J. Int. J. Pharm., 2006, 314(2): 127.

[10]

Ta H. T., Dass C. R., Dunstan D. E. J. Control. Release, 2008, 126(3): 205.

[11]

Fujioka T., Taketani S., Nagasaki T., Matsumoto A. Bioconjugate Chem., 2009, 20(10): 1879.

[12]

Haag R. Angew. Chem. Int. Ed., 2004, 43(3): 278.

[13]

Mi Y., Liu Y. T., Feng S. S. Biomaterials, 2011, 32(16): 4058.

[14]

Maeda H., Nakamura H., Fang J. Adv. Drug Deliv. Rev., 2013, 65(1): 71.

[15]

Mi Y., Zhao J., Feng S. S. Nanomedicine, 2013, 8(10): 1559.

[16]

Schroeder A., Heller D. A., Winslow M. M., Dahlman J. E., Pratt G. W., Langer R., Jacks T., Anderson D. G. Nat. Rev. Cancer, 2012, 12(1): 39.

[17]

Mi Y., Guo Y. J., Feng S. S. Nanomedicine, 2012, 7(12): 1791.

[18]

Y. Y., Ding G. B., Zhai J. H., Guo Y., Nie G. J., Xu L. Colloid Surf. B, Biointerfaces, 2013, 110: 411.

[19]

Ding G. B., Liu H. Y., Wang Y., Lv Y. Y., Wu Y., Guo Y., Xu L. Chem. Res. Chinese Universities, 2013, 29(1): 103.

[20]

Wang Y., Wang X. Y., Y. Y., Xu W. B., Guo Y., Xu L. Chem. J. Chinese Universities, 2013, 34(12): 2866.

[21]

Chen F., Dong D., Fu Y., Zheng Y. H., Liu S., Chang M. X., Jing X. B. Chem. Res. Chinese Universities, 2012, 28(4): 656.

[22]

Ding G. B., Wang Y., Guo Y., Xu L. ACS Appl. Mater. Interfaces, 2014, 6(19): 16643.

[23]

Ding G. B., Liu H. Y., Y. Y., Liu X. F., Guo Y., Sun C. K., Xu L. Chem., Eur. J., 2012, 18(44): 14037.

[24]

Liu P., Situ J. Q., Li W. S., Shan C. L., You J., Yuan H., Hu F. Q., Du Y. Z. Nanomedicine: Nanotechnology, Biology and Medicine, 2015, 11(4): 855.

[25]

Ahmed F., Discher D. E. J. Control. Release, 2004, 96(1): 37.

[26]

Sobczak M., Korzeniowska A., Gos P., Kolodziejski W. L. Eur. J. Med. Chem., 2011, 46(7): 3047.

[27]

Song Z. M., Feng R. L., Sun M., Guo C. Y., Gao Y., Li L. B., Zhai G. X. J. Colloid Interface Sci., 2011, 354(1): 116.

[28]

Kim S., Shi Y. Z., Kim J. Y., Park K., Cheng J. X. Expert Opin. Drug Deliv., 2010, 7(1): 49.

[29]

Xiong X. B., Mahmud A., Uludag H., Lavasanifar A. Pharm. Res., 2008, 25(11): 2555.

[30]

Soppimath K. S., Liu L. H., Seow W. Y., Liu S. Q., Powell R., Chan P., Yang Y. Y. Adv. Funct. Mater., 2007, 17(3): 355.

[31]

Banerjee S. S., Chen D. H. J. Nanopart. Res., 2009, 11(8): 2071.

[32]

Tian J., Stella V. J. J. Pharm. Sci., 2010, 99(3): 1288.

[33]

Morgan M. T., Nakanishi Y., Kroll D. J., Griset A. P., Carnahan M. A., Wathier M., Oberlies N. H., Manikumar G., Wani M. C., Grinstaff M. W. Cancer Res., 2006, 66(24): 11913.

[34]

Yang X. Q., Grailer J. J., Pilla S., Steeber D. A., Gong S. Q., Shuai X. T. J. Biofabrication, 2010, 2(2): 025004.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/