Investigation on ligand exchange kinetics at CdSe/ZnS quantum dot surface utilizing pyrene as flourescent probe

Yulei Chang , Nian Liu , Huan Liu , Yanming Yang , Yili Zhao , Yapeng Li , Hang Yuan

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (4) : 514 -518.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (4) : 514 -518. DOI: 10.1007/s40242-015-5110-6
Article

Investigation on ligand exchange kinetics at CdSe/ZnS quantum dot surface utilizing pyrene as flourescent probe

Author information +
History +
PDF

Abstract

Direct ligand exchange kinetics between hydrophilic molecules and quantum dots(QDs) was investigated. Meanwhile, pyrene was exploited as probe to detect the efficiency of the ligand exchange reaction between octadecylamine-coated QDs(ODA-QDs) and different ligands[ligand 1: NH2G3-OH, ligand 2: G4.5-PEG5-FA5, ligand 3: (COOH)2G3-OH or ligand 4: G4.5-PEG1-FA1]. It was indicated that water-soluble QDs exhibit the same fluorescence and absorption spectra as ODA-QDs when they were dissolved in chloroform. Furthermore, the cellular experiments demonstrated that the folic acid(FA) targeting poly(amidoamine)(PAMAM) modified QD conjugates could be used as molecular targeting sensing systems for nanoparticle probes.

Keywords

Fluorescent probe / Ligand exchange kinetic / Poly(amidoamine) dendrimer / Pyrene / Quantum dot

Cite this article

Download citation ▾
Yulei Chang, Nian Liu, Huan Liu, Yanming Yang, Yili Zhao, Yapeng Li, Hang Yuan. Investigation on ligand exchange kinetics at CdSe/ZnS quantum dot surface utilizing pyrene as flourescent probe. Chemical Research in Chinese Universities, 2015, 31(4): 514-518 DOI:10.1007/s40242-015-5110-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Michalet X, Pinaud F F, Bentolila LA, Tsay J M, Doose J J, Li G, Sundaresan A M, Wu S S, Gambhir S, Weiss S. J. Polym. Sci., 2005, 307: 538.

[2]

Chan W C W, Nie S. J. Polym. Sci., 1998, 281: 2016.

[3]

Alivisatos A P, Gu W, Larabell C. Annu. Rev. Biomed. Eng., 2005, 7: 55.

[4]

Xu Y D, Zhang Z Y, Kong J L, Li G D, Xiong H M. Chem. J. Chinese Universities., 2013, 34(7): 1565.

[5]

Murray C B, Norris D J, Bawendi M G. J. Am. Chem. Soc., 1993, 115: 8706.

[6]

Talapin D V, Rogach A L, Kornowski A, Haase M, Weller H. Nano Lett., 2001, 1: 207.

[7]

Zhao Y, Li Y, Song Y, Jiang W, Wu Z, Wang Y A, Sun J, Wang J. J. Colloid Interface Sci., 2009, 339: 336.

[8]

Dubois F, Mahler B, Dubertret B, Doris E, Mioskowski C. J. Am. Chem. Soc., 2007, 129: 482.

[9]

Zhao Y, Liu S, Li Y, Jiang W, Chang Y, Pan S, Fang X, Wang Y A, Wang J. J. Colloid Interface Sci., 2010, 350: 44.

[10]

Wang Y A, Li J J, Chen H, Peng X. J. Am. Chem. Soc., 2002, 124: 2293.

[11]

Liu Y, Kim M, Wang Y, Wang Y A, Peng X. Langmuir, 2006, 22: 6341.

[12]

Duan H, Nie S. J. Am. Chem. Soc., 2007, 129: 3333.

[13]

Guo W, Li J J, Wang Y A, Peng X. Chem. Mater., 2003, 15: 3125.

[14]

Wilhelm M, Zhao C, Wang W, Xu R, Winnik M A. Macromolecules, 1991, 24: 1033.

[15]

Ringsdorf H, Venzmer J, Winnik F M. Macromolecules, 1991, 24: 1678.

[16]

Tomalia D A, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. Polym. J., 1985, 17: 117.

[17]

Tomalia D A, Naylor A M, Gaddard W A. Angew. Chem. Int. Ed. Engl., 1990, 29: 138.

[18]

Li J J, Wang Y A, Guo W, Keay J C, Mishima T D, Johnson M B, Peng X. J. Am. Chem. Soc., 2003, 125: 12567.

[19]

Duan H W, Kuang M, Wang X X, Wang Y A, Mao H, Nie S M. J. Phys. Chem. C, 2008, 112: 8127.

[20]

Sahu A, Bora U, Kasoju N, Goswami P. Acta Biomaterialia, 2008, 4: 1752.

[21]

Corona G, Giannini F, Fabris M, Toffoli G, Boiocchi M. Int. J. Cancer, 1998, 75: 125.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/