Theoretical investigation on binding process of allophanate to allophanate hydrolase

Zidong Zhang , Jilong Zhang , Qingchuan Zheng , Chuipeng Kong , Zhengqiang Li , Hongxing Zhang , Jianzhang Ma

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 1023 -1028.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 1023 -1028. DOI: 10.1007/s40242-015-5108-0
Article

Theoretical investigation on binding process of allophanate to allophanate hydrolase

Author information +
History +
PDF

Abstract

Several molecular simulation methods were integrated to investigate the detailed binding process of allophanate to allophanate hydrolase and predict their stable complex structure. The optimal enzyme-substrate complex conformation demonstrates that along with Arg307 and Tyr299, Gly124 is also one of the key anchor residues in the stable complex. The energetic calculation suggests the existence of an intermediate state in the enzyme-substrate binding process. The further atomic-level investigation illuminates that Tyr299, Arg307 and Ser172 can stabilize the substrate in the intermediate state. By this token, the residues Arg307 and Tyr299 function in both binding process and getting stable state.

Keywords

Allophanate hydrolase / Molecular dynamics simulation / Substrate binding / Free energy / Intermediate state

Cite this article

Download citation ▾
Zidong Zhang, Jilong Zhang, Qingchuan Zheng, Chuipeng Kong, Zhengqiang Li, Hongxing Zhang, Jianzhang Ma. Theoretical investigation on binding process of allophanate to allophanate hydrolase. Chemical Research in Chinese Universities, 2015, 31(6): 1023-1028 DOI:10.1007/s40242-015-5108-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chebrou H., Bigey F., Arnaud A., Galzy P. BBA-Protein Struct. M., 1996, 1298: 285.

[2]

Shin S., Yun Y. S., Koo H. M., Kim Y. S., Choi K. Y., Oh B. H. J. Biol. Chem., 2003, 278: 24937.

[3]

Shin S., Lee T. H., Ha N. C., Koo H. M., Kim S. Y., Lee H. S., Kim Y. S., Oh B. H. EMBO J., 2002, 21: 2509.

[4]

Kim Y. S., Kang S. W. J. Biol. Chem., 1994, 269: 8014.

[5]

Deutsch D. G., Ueda N., Yamamoto S. Prostag. Leukotr. Ess., 2002, 66: 201.

[6]

Wu J., Bu W., Sheppard K., Kitabatake M., Kwon S. T., Söll D., Smith J. L. J. Mol. Biol., 2009, 391: 703.

[7]

Ohtaki A., Murata K., Sato Y., Noguchi K., Miyatake H., Dohmae N., Yamada K., Yohda M., Odaka M. BBA-Proteins Proteom., 2010, 1804: 184.

[8]

Yasuhira K., Shibata N., Mongami G., Uedo Y., Atsumi Y., Kawashima Y., Hibino A., Tanaka Y., Lee Y. H., Kato D. I., Takeo M., Higuchi Y., Negoro S. J. Biol. Chem., 2010, 285: 1239.

[9]

Fan C., Chou C. Y., Tong L., Xiang S. J. Biol. Chem., 2012, 287: 9389.

[10]

Cheng G., Shapir N., Sadowsky M. J., Wackett L. P. Appl. Environ. Microb., 2005, 71: 4437.

[11]

Kanamori T., Kanou N., Kusakabe S., Atomi H., Imanaka T. FEMS Microbiol. Lett., 2005, 245: 61.

[12]

Shapir N., Sadowsky M. J., Wackett L. P. J. Bacteriol., 2005, 187: 3731.

[13]

Strope P. K., Nickerson K. W., Harris S. D., Moriyama E. N. BMC Evolutionary Biology, 2011, 11: 80.

[14]

Kanamori T., Kanou N., Atomi H., Imanaka T. J. Bacteriol., 2004, 186: 2532.

[15]

Balotra S., Newman J., French N. G., Briggs L. J., Peat T. S., Scott C. Acta Crystallogr F, 2014, 70: 310.

[16]

Lin Y., St. Maurice M. Biochemistry, 2013, 52: 690.

[17]

Fan C., Li Z., Yin H., Xiang S. J. Biol. Chem., 2013, 288: 21422.

[18]

Balotra S., Newman J., Cowieson N. P., French N. G., Campbell P. M., Briggs L. J., Warden A. C., Easton C. J., Peat T. S., Scott C. Appl. Environ. Microb., 2015, 81: 470.

[19]

Dong L., Yi Z., Wu Z., Wang H., Zhang A. Chem. J. Chinese Universities, 2015, 36(3): 516.

[20]

Zhang J. L., Zheng Q. C., Li Z. Q., Zhang H. X. PLoS ONE, 2013, 8: e53811.

[21]

Zhang J. L., Zheng Q. C., Chu W. T., Zhang H. X. Curr. Comput. Aid. Drug., 2013, 9: 532.

[22]

Zhang J., Zheng Q., Zhang H. J. Phys. Chem. B, 2010, 114: 7383.

[23]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J., Brothers E. N., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas, Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, 2009, Wallingford CT: Gaussian Inc..

[24]

Wu G., Robertson D. H., Brooks C. L. I., Vieth M. J. Comput. Chem., 2003, 24: 1549.

[25]

Discovery Studio, Release 2.5, Accelrys Software Inc., San Diego, 2013

[26]

Humphrey W., Dalke A., Schulten K. J. Mol. Graph., 1996, 14: 33.

[27]

Phillips J. C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R. D., Kalé L., Schulten K. J. Comput. Chem., 2005, 26: 1781.

[28]

MacKerell A. D., Feig M., Brooks C. L. J. Am. Chem. Soc., 2003, 126: 698.

[29]

Vanommeslaeghe K., Raman E. P., MacKerell A. D. J. Chem. Inf. Model., 2012, 52: 3155.

[30]

Vanommeslaeghe K., MacKerell A. D. J. Chem. Inf. Model., 2012, 52: 3144.

[31]

Becke A. D. J. Chem. Phys., 1993, 98: 5648.

[32]

Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L. J. Chem. Phys., 1983, 79: 926.

[33]

Darden T., York D., Pedersen L. J. Chem. Phys., 1993, 98: 10089.

[34]

Feller S. E., Zhang Y., Pastor R. W., Brooks B. R. J. Chem. Phys., 1995, 103: 4613.

[35]

Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlikova B., Gora A., Sustr V., Klvana M., Medek P., Biedermannova L., Sochor J., Damborsky J. PLoS Comput. Biol., 2012, 8: e1002708.

[36]

Zhang J. L., Zheng Q. C., Zhang H. X. Chem. Phys. Lett., 2010, 484: 338.

[37]

Hénin J., Chipot C. J. Chem. Phys., 2004, 121: 2904.

[38]

Rodriguez-Gomez D., Darve E., Pohorille A. J. Chem. Phys., 2004, 20: 3563.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/