Highly porous amidoximed carbon nanofibers supported palladium(0) nanoparticle catalyzed Heck reaction

Qingrun Meng , Jie Bai , Shoujun Guo , Chunping Li

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 1072 -1077.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 1072 -1077. DOI: 10.1007/s40242-015-5093-3
Article

Highly porous amidoximed carbon nanofibers supported palladium(0) nanoparticle catalyzed Heck reaction

Author information +
History +
PDF

Abstract

Highly porous amidoximed carbon nanofibers(AOCNFs), which were fabricated via a conventional electrospinning technique followed by chemically modification, impregnation-reduction and carbonization process, had been used for the immobilization of palladium nanoparticles(Pd NPs) catalyst. During the carbonization process, polystyrene( PS) was selectively decomposed from bicomponent fibers, generating porous fibers. Fourier transform infrared spectroscopy(FTIR) result revealed the functional groups on PAN-PS fibers(PAN=polyacrylonitrile), AOPAN-PS fibers and AOCNFs; scanning electron microscopy(SEM) was used to observe the morphology of all stages of nanofibers; transmission electron microscopy(TEM) result gave the structure of through-hole morphology clearly visible and the dispersion of Pd NPs on the surface of nanofibers; and X-ray photoelectron spectra(XPS) confirmed that Pd nanoparticles on the surface of AOCNFs was of the metallic state. Moreover, the as-prepared catalyst exhibited high catalytic activity and efficient recycle for Heck coupling reactions between iodobenzene and acrylates.

Keywords

Pd nanoparticle / Carbon nanofiber / Heck reaction

Cite this article

Download citation ▾
Qingrun Meng, Jie Bai, Shoujun Guo, Chunping Li. Highly porous amidoximed carbon nanofibers supported palladium(0) nanoparticle catalyzed Heck reaction. Chemical Research in Chinese Universities, 2015, 31(6): 1072-1077 DOI:10.1007/s40242-015-5093-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lara P., Philippot K., Chaudret B. Chem. Cat. Chem., 2013, 5(1): 28.

[2]

Yao T. J., Cui T. Y., Fang X. Chem. J. Chinese Universities, 2013, 34(10): 2421.

[3]

Cai B. T., Gu P., Zeng L. X. Chem. Res. Chinese Universities, 2014, 30(3): 472.

[4]

Guo L. P., Bai J., Li C. P., Liang H. O., Sun W. Y., Meng Q. R., Xu T. New J. Chem., 2013, 37(12): 4037.

[5]

Liu B. B., Zhang G. Z., He H. Chem. J. Chinese Universities, 2013, 34(8): 1936.

[6]

Bhattacharjee S., Bruening M. L. Langmuir, 2008, 24(6): 2916.

[7]

Torborg C., Beller M. Adv. Synth. Catal., 2009, 351(18): 3027.

[8]

Coudary B. M., Madhi S., Chowdari N. S., Kantam M. L., Sreedhar B. J. Am. Chem. Soc., 2002, 124(47): 14127.

[9]

Vries de J. G. Can. J. Chem., 2001, 79(5): 1086.

[10]

Heck R. F. Acc. Chem. Res., 1979, 12(4): 146.

[11]

Kohler K., Wagner M., Djakovitch L. Catal. Today, 2001, 66(1): 105.

[12]

Liu J., Yue Z., Fong H. Small, 2009, 5(5): 536.

[13]

Inagaki M., Yang Y., Kang F. Adv. Mater., 2012, 24(19): 2547.

[14]

Cramariuc B., Cramariuc R., Scarlet R., Manea L. R., Lupu I. G., Cramariuc O. J. Electrostat., 2013, 71(3): 189.

[15]

Greiner A., Wendorff J. H. Angew Chem. Int. Ed., 2007, 46(30): 5670.

[16]

Ji L., Saquing C., Khan S. A., Zhang X. W. Nanotechnology, 2008, 19(8): 085605.

[17]

Gupta A., Saquing C., Afshari M., Tonelli A., Khan S. A., Kotek R. Macromolecules, 2009, 42(3): 709.

[18]

Lin J., Ding B., Yu J., Hsieh Y. Macromol. Mater. Eng., 2009, 294(10): 673.

[19]

Mehmet D., Benoit M., Nagendra A., Behnam P. J. Mater. Sci., 2012, 47(16): 5955.

[20]

Bognitzki M., Frese T., Steinhart M., Greiner A., Schaper A., Hellwig M., Wendorff J. H. Polym. Eng. Sci., 2001, 41(6): 982.

[21]

Peng M., Li D., Shen L., Chen Y., Zheng Q., Wang H. Langmuir, 2006, 22(22): 9368.

[22]

Rao L., Xu J., Zhan R. Y. J. Appl. Polym. Sci., 1994, 53(3): 325.

[23]

Aneta F. S., Maciej B., Stanislaw B. J. Mater. Sci., 2009, 44(17): 4721.

[24]

Deng S. B., Bai R. B., Chen J. P. Langmuir, 2003, 19(12): 5058.

[25]

Saeed K., Haider S., Oh T. J., Park S. Y. J. Membrane Sci., 2008, 322(2): 400.

[26]

Bilba N., Bilba D., Moroi G. J. Appl. Polym. Sci., 2004, 92(6): 3730.

[27]

Lutfor M. R., Silong S., Zin W. M., Ab Rahman M. Z., Ahmad Haron M. J. Eur. Polym. J., 2000, 36(10): 2105.

[28]

Zhang C. Q., Yang Q. B., Zhan N. Q., Sun L., Wang H. G., Song Y., Li Y. X. Colloid Surf. A: Physicochem. Eng. Asp., 2010, 362(59): 58.

[29]

Shao L. J., Ji W. X., Dong P. D., Zeng M. F., Qi C. Z., Zhang X. M. Appl. Catal. A: Gen., 2012, 413: 267.

[30]

Zhang B. B., Song J. L., Liu H. Z., Shi J. H., Ma J., Fan H. L., Wang W. T., Zhang P., Han B. X. Green Chem., 2014, 16(3): 1198.

[31]

Guo L. P., Bai J., Wang J. Z., Liang H. O., Li C. P., Sun W. Y., Meng Q. R. J. Mol. Catal. Chem., 2015, 400: 95.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/