Synthesis and characterization of poly(ω-pentadecalactone) for its industrial-scale production

Qing Chang , Li Li , Dalei Yang , Mingyao Zhang , Minh-Tan Ton-That , Wei Hu , Shuai Lü

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (4) : 640 -644.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (4) : 640 -644. DOI: 10.1007/s40242-015-5092-4
Article

Synthesis and characterization of poly(ω-pentadecalactone) for its industrial-scale production

Author information +
History +
PDF

Abstract

The synthesis of biomaterial poly(ω-pentadecalactone)(PPDL) with yttrium isopropoxide as initiator in bulk was explored for its industrial-scale production. The weight-average molecular weight($\bar M_w$) of PPDL could be controlled by the molar ratio of monomer to initiator(M/I), polymerization temperature(T p) and period(t p). The synthesis conditions were optimized, and a high $\bar M_w$ of 9.2×104 of PPDL could be obtained by the reaction at an M/I molar ratio of 1000/1 and 100 °C for only 30 min, which presented tough properties with a tensile strength of about 20 MPa and an elongation at break of about 300%. This mechanical property was comparable to that of high density polyethylene(HDPE). The melting point was about 96 °C, and 5% of mass loss temperature(T 5%) was as high as 340 °C. Thus, the PPDL with good mechanical properties and high thermal stability can be synthesized without solvent at low expenses.

Keywords

Poly(ω-pentadecalactone) / Polymerization / Characterization

Cite this article

Download citation ▾
Qing Chang, Li Li, Dalei Yang, Mingyao Zhang, Minh-Tan Ton-That, Wei Hu, Shuai Lü. Synthesis and characterization of poly(ω-pentadecalactone) for its industrial-scale production. Chemical Research in Chinese Universities, 2015, 31(4): 640-644 DOI:10.1007/s40242-015-5092-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Focarete M.L., Scandola M., Kumar A., Gross R.A. J. Polym. Sci.: Poly. Phy., 2001, 39: 1721.

[2]

Cai J.L., Liu C., Cai M.M., Zhu J., Zuo F., Hsiao B.S., Gross R.A. Polymer, 2010, 51(5): 1088.

[3]

Cai J.L., Hsiao B.S., Gross R.A. Polym. Int., 2009, 58: 944.

[4]

Gazzano M., Malta V., Focarete M.L., Scandola M., Gross R.A. J. Polym. Sci.: Poly. Phy., 2003, 41: 1009.

[5]

Skoglund P., Fransson A. Polymer, 1998, 39(14): 3143.

[6]

Skoglund P., Fransson A. Polymer, 1998, 39(10): 1899.

[7]

Kim E., Uyama H., Doi Y., Ha C.S., Iwata T. Macromol. Biosci., 2005, 5: 734.

[8]

Nomura R., Ueno A., Endo T. Macromolecules, 1994, 27: 620.

[9]

Jedlinski Z., Juzwa M., Adamus G., Kowalczuk M. Macromol. Chem. Phys., 1996, 197: 2923.

[10]

Duda A., Kowalski A., Penczek S., Uyama H., Kobayashi S. Macromolecules, 2002, 35: 4266.

[11]

Bisht K.S., Henderson L.A., Gross R.A., Kaplan D.L., Swift G. Macromolecules, 1997, 30: 2705.

[12]

Hunsen M., Abul A., Xie W.C., Gross R.A. Biomacromolecules, 2008, 9: 518.

[13]

Kobayashi S. Macromol. Rapid Comm., 2009, 30: 237.

[14]

Yu Y., Wu D., Liu C.B., Zhao Z.H., Yang Y., Li Q.S. Process Biochem., 2012, 47: 1027.

[15]

Bouyahyi M., Duchateau R. Macromolecules, 2014, 47(2): 517.

[16]

Pascual A., Leiza J.R., Mecerreyes D. Eur. Polym. J., 2013, 49(6): 1601.

[17]

Wilson J.A., Hopkins S.A., Wright P.M., Dove A.P. Macromolecules, 2015, 48(4): 950.

[18]

Jasinska-Walc L., Bouyahyi M., Rozanski A., Graf R., Hansen M.R., Duchateau R. Macromolecules, 2015, 48(3): 502.

[19]

Zhong Z.Y., Dijkstra P.J., Jan FJ. Macromol. Chem. Phys., 2000, 201: 1329.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/