Silica nanoparticles-mediated stable genetic transformation in Nicotiana tabacum

Yuqin Fu , Luhua Li , Hui Wang , Yuan Jiang , Huijing Liu , Xiyan Cui , Piwu Wang , Changli Lü

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 976 -981.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 976 -981. DOI: 10.1007/s40242-015-5088-0
Article

Silica nanoparticles-mediated stable genetic transformation in Nicotiana tabacum

Author information +
History +
PDF

Abstract

Nanoparticles as gene carriers become popular in the mammalian cells, whereas the application of them in plant cells is still very limited. Herein lies a report on silica nanoparticles(SiNPs) modified with positively charged poly-L-lysine(PLL) successfully delivering plasmid-encoded β-glucuronidase(GUS) gene into tobacco with the help of gene gun. The stable transgenic tobacco plants mediated by SiNPs can be obtained. Furthermore, we revealed the quantity of gene and types of receptor materials could affect the expression efficiency. In comparison to conventional gold particles-mediated transformation, the silica nanoparticles-mediated stable genetic transformation enhances transformation efficiency, potentially overcoming transgenic silencing. Our results demonstrate the great potential of SiNPs as gene carrier in plant genetic transformation and prove a novel approach for plant genetic decoration.

Keywords

Silica nanoparticle / Gene carrier / Transformation / Stable expression

Cite this article

Download citation ▾
Yuqin Fu, Luhua Li, Hui Wang, Yuan Jiang, Huijing Liu, Xiyan Cui, Piwu Wang, Changli Lü. Silica nanoparticles-mediated stable genetic transformation in Nicotiana tabacum. Chemical Research in Chinese Universities, 2015, 31(6): 976-981 DOI:10.1007/s40242-015-5088-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sharma P., Brown S., Walter G., Santra S., Moudgil B. J. Colloid Interf. Sci., 2006, 123-126: 471.

[2]

Mintzer M. A., Simanek E. E. Chem. Rev., 2009, 109: 259.

[3]

Uchida M., Klem M. T., Allen M., Suci P., Flenniken M., Gillitzer E., Varpness Z., Liepold L. O., Young M., Douglas T. Adv. Mater., 2007, 19: 1025.

[4]

Marcel B. Jr., Moronne M., Gin P., Weiss S., Alivisatos A. P. Science, 1998, 281: 2013.

[5]

Xu Z. P., Zeng Q. H., Lu G. Q. Chem. Eng. Sci., 2006, 61: 1027.

[6]

Sokolova V., Epple M. Angew. Chem. Int. Ed., 2008, 47: 1382.

[7]

Nguyen D. N., Green J. J., Chan J. M., Langer R., Anderson D. G. Adv. Mater., 2009, 21: 847.

[8]

Wiesman Z., Dom N. B., Sharvit E., Grinberg S., Linder C., Heldman E., Zaccai M. J. Biotechnol., 2007, 130: 85.

[9]

Nair R., Varghese S. H., Nair B. G., Maekawa T., Yoshida Y., Kumar D. S. Plant Sci., 2010, 179: 154.

[10]

Torney F., Trewyn B. G., Lin V. S., Wang K. Nat. Nanotechnol., 2007, 2: 295.

[11]

Liu J., Wang F., Wang L., Xiao S., Tong C., Tang D., Liu X. J. Cent. South Univ. T., 2008, 15: 768.

[12]

Pasupathy K., Lin S., Hu Q., Luo H., Ke P. C. Biotechnol. J., 2008, 3: 1078.

[13]

Song Y., Li Y., Cui H. X., Li Y. Biotechnol. Bull., 2009, 6: 75.

[14]

Köping-Höggård M., Tubulekas I., Guan H., Edwards K., Nilsson M., Vårum K., Artursson P. Gene Ther., 2001, 8: 1108.

[15]

Bharali D. J., Klejbor I., Stachowiak E. K., Dutta P., Roy I., Kaur N., Bergey E. J., Prasad P. N., Stachowiak M. K. Proc. Natl. Acad. Sci.USA, 2005, 102: 11539.

[16]

Trewyn B. G., Giri S., Slowing I. I., Lin V. S. Chem. Commun., 2007, 31: 3236.

[17]

Hom C., Lu J., Liong M., Luo H., Li Z., Zink J. I., Tamanoi F. Small, 2010, 6: 1185.

[18]

Barnes C. A., Elsaesser A., Arkusz J., Smok A., Palus J., Lesniak A., Salvati A., Hanrahan J. P., Jong W. H., Dziubaltowska E. Nano. Lett., 2008, 8: 3069.

[19]

Boussif O., Lezoualc’h F., Zanta M. A., Mergny M. D., Scherman D., Demeneix B., Behr J. P. Proc. Natl. Acad. Sci.USA, 1995, 92: 7297.

[20]

Bivas-Benita M., Romeijn S., Junginger H. E., Borchard G. Eur. J. Pharm. Biopharm., 2004, 58: 1.

[21]

He X., Nie H., Wang K., Tan W., Wu X., Zhang P. Anal. Chem., 2008, 80: 9597.

[22]

Burns A. A., Vider J., Ow H., Herz E., Penate-Medina O., Baumgart M., Larson S. M., Wiesner U., Bradbury M. Nano Lett., 2008, 9: 442.

[23]

Fu Y. Q., Li L. H., Wang P. W., Qu J., Fu Y. P., Wang H., Sun J. R., Lu C. L. Chem. Res. Chinese Universities, 2012, 28(4): 672.

[24]

Stöber W., Fink A., Bohn E. J. Colloid Interface Sci., 1968, 26: 62.

[25]

Jefferson R. A. Plant Mol. Bio. Rep., 1987, 5: 387.

[26]

McCabe M. S., Power J. B., de Laat A. M., Davey M. R. Mol Biotechnol., 1997, 7: 79.

[27]

Yu H.Y., Tang Z. H., Song W. H., Deng M. X., Chen X. S. Chem. J. Chinese Universities, 2014, 35(5): 903.

[28]

Xiu Y., Zhou Y., Gao Q., Chen J. S., Li G. D. Chem. Res. Chinese Universities, 2013, 29(1): 189.

[29]

Periyasamy S. V., Othalathara U. A., Bashir M. K., Bhagavatula L. V. P. Adv. Funct. Mater., 2010, 20: 2416.

[30]

Susana M. O., Justin S. V., Victor S. Y. L., Brian G. T., Kan W. Adv. Funct. Mater., 2012, 22: 3576.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/