First-principles study on the electronic and bonding properties of PbTiO3 (110) polar terminations

Guoxu Zhang , Haitao Yu , Ying Xie

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 825 -829.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 825 -829. DOI: 10.1007/s40242-015-5074-6
Article

First-principles study on the electronic and bonding properties of PbTiO3 (110) polar terminations

Author information +
History +
PDF

Abstract

The electronic structures and bonding properties of the (110) polar terminations of cubic PbTiO3 were examined by the first-principles calculations at the generalized gradient approximation level. Two stoichiometric (PbTiO and O2) and three nonstoichiometric(TiO, Pb, and O) terminations were considered in this study. With the aid of the calculated electron density differences, atomic charges, band structures, and densities of states, the charge redistributions and electronic properties were evaluated in detail. Furthermore, based on the calculated results of the cleavage energies, relaxation energies, and surface energies of the investigated terminations, the charge compensation by the modification of the surface stoichiometry and the fillings of surface states were thermodynamically evaluated.

Keywords

PbTiO3 / (110) surface / Polar termination / Electronic structure

Cite this article

Download citation ▾
Guoxu Zhang, Haitao Yu, Ying Xie. First-principles study on the electronic and bonding properties of PbTiO3 (110) polar terminations. Chemical Research in Chinese Universities, 2015, 31(5): 825-829 DOI:10.1007/s40242-015-5074-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peña M A, Fierro J L G. Chem. Rev., 2001, 101: 1981.

[2]

Bhalla A S, Guo R Y, Roy R. Mat. Res. Innovat., 2000, 4: 3.

[3]

Waghmare U V. Acc. Chem. Res., 2014, 47: 3242.

[4]

Merckling C, El-Kazzi M, Delhaye G, Favre-Nicolin V, Robach Y, Gendry M, Grenet G, Saint-Girons G, Hollinger G. J. Cryst. Growth, 2007, 306: 47.

[5]

Liu M, Ma C R, Collins G, Liu J, Chen C L, Dai C, Lin Y, Shui L, Xiang F, Wang H, He J, Jiang J C, Meletis E I, Cole M W. ACS Appl. Mater. Interfaces, 2012, 4: 5761.

[6]

Deng S Q, Xu G, Bai H W, Li L L, Jiang S, Shen G, Han G R. Inorg. Chem., 2014, 53: 10937.

[7]

Lijima K, Tomita Y, Takayama R, Ueda I. J. Appl. Phys., 1986, 60: 361.

[8]

Scott J F, de Araujo C A P. Science, 1989, 246: 1400.

[9]

Kighelman Z, Damjanovic D, Cantoni M, Setter N. J. Appl. Phys., 2002, 91: 1495.

[10]

Noguera C. J. Phys.: Condens. Matter., 2000, 12: R367.

[11]

Wander A, Schedin F, Steadman P, Norris A, McGrath R, Turner T S, Thornton G, Harrison N M. Phys. Rev. Lett., 2001, 86: 3811.

[12]

Xie Y, Yu H T. Chem. Res. Chinese Universities, 2014, 30(5): 794.

[13]

Chen H, Xie Y, Zhang G X, Yu H T. J. Phys.: Condens. Matter, 2014, 26: 395002.

[14]

Xie Y, Yu H T, Zhang G X, Fu H G, Sun J Z. J. Phys. Chem. C, 2007, 111: 6343.

[15]

Zhang G X, Xie Y, Yu H T, Fu H G. J. Comput. Chem., 2009, 30: 1785.

[16]

Heifets E, Ho J, Merinov B. Phys. Rev. B, 2007, 75: 155431.

[17]

Bottin F, Finocchi F, Noguera C. Phys. Rev. B, 2003, 68: 035418.

[18]

Dulub O, Diebold U, Kresse G. Phys. Rev. Lett., 2003, 90: 016102.

[19]

Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Phys. Rev. B, 1992, 46: 6671.

[20]

Vanderbilt D. Phys. Rev. B, 1990, 41: 7892.

[21]

Monkhorst H J, Pack J D. Phys. Rev. B, 1976, 13: 5188.

[22]

Heifets E, Kotomin E A, Maier J. Surf. Sci., 2000, 462: 19.

[23]

Heifets E, Kotomin E A. Thin Solid Films, 2000, 358: 1.

[24]

Chen H, Ding Y H, Yu H T, Xie Y. J. Phys. Chem. C, 2015, 119: 9364.

[25]

Zheng B, Yu H T, Xie Y, Lian Y F. ACS Appl. Mater. Interfacs, 2014, 6: 19690.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/