Optical properties of dye based on hydroxamate improved with designed tridentate ligands for dye sensitized solar cell: a theoretical study

Mo Xie , Jie Chen , Jian Wang , Hongxing Zhang

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 830 -834.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 830 -834. DOI: 10.1007/s40242-015-5073-7
Article

Optical properties of dye based on hydroxamate improved with designed tridentate ligands for dye sensitized solar cell: a theoretical study

Author information +
History +
PDF

Abstract

A density function theory(DFT) study was made on three dyes based on hydroxamate with different ligands[terpyridine, isothiocyanate(NCS) and 2,2′-bis(thienyl)-tripyrrinate(2-BTTP)] to investigtate their device performance optimization in dye sensitized solar cell(DSSC). Based on the adsorbed dye on TiO2 (101) surface, the ground state geometry structures, electronic structures, absorption spectra and correspongding charge transfer properties were analysed in detail. The results indicate that the ligand replacement of terpyridine by NCS and 2-BTTP improves the low-energy region absorption of hydroxamate based dyes significantly. The electron injection and light harvesting capability of hydroxamate based dyes are enhanced by NCS and 2-BTTP ligands as well. In the visible region, hydroxamate based dyes have the potentials to become panchromatic light absorbers according to our research.

Keywords

Dye sensitized solar cell / Density functional theory / Hydroxamate based dye / Absorption spectrum

Cite this article

Download citation ▾
Mo Xie, Jie Chen, Jian Wang, Hongxing Zhang. Optical properties of dye based on hydroxamate improved with designed tridentate ligands for dye sensitized solar cell: a theoretical study. Chemical Research in Chinese Universities, 2015, 31(5): 830-834 DOI:10.1007/s40242-015-5073-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

O’regan B, Gräzel M. Nature, 1991, 353: 24.

[2]

Hagfeldt A, Grätzel M. Acc. Chem. Res., 2000, 33: 269.

[3]

Kalyanasundaram K, Grätzel M. Coord. Chem. Rev., 1998, 177: 347.

[4]

Grätzel M. Nature, 2001, 414: 338.

[5]

Nazeeruddin M K, Pechy P, Renouard T, Zakeeruddin S M, Humphry B R, Comte P, Liska P, Cevey L, Costa E, Shklover V. J. Am. Chem. Soc., 2001, 123: 1613.

[6]

Chen J, Wang J, Bai F Q, Zheng Q C, Zhang H X. Chem. Res. Chinese Universities, 2012, 28(4): 696.

[7]

Chen J, Wang M. Chem. Res. Chinese Universities, 2013, 29(3): 584.

[8]

Zhao Y D, Fu J J, Li H B, Dong H, Liao Y. Chem. Res. Chinese Universities, 2013, 29(5): 974.

[9]

Nazeeruddin M K, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M. J. Am. Chem. Soc., 1993, 115: 6382.

[10]

Nazeeruddin M K, Zakeeruddin S, Humphry B R, Jirousek M, Liska P, Vlachopoulos N, Shklover V, Fischer C H, Grätzel M. Inorg. Chem., 1999, 38: 6298.

[11]

Onozawa-Komatsuzaki N, Yanagida M, Funaki T, Kasuga K, Sayama K, Sugihara H. Sol. Energ. Mat. Sol. C, 2011, 95: 310.

[12]

Kusama H, Sayama K. J. Phys. Chem. C, 2012, 116: 1493.

[13]

Chen C Y, Wu S J, Wu C G, Chen J G, Ho K C. Angew. Chem., 2006, 118: 5954.

[14]

Chen J, Bai F Q, Wang J, Sun L, Pan Q J, Zhang H X. Science China Chemistry, 2012, 55: 398.

[15]

Dai F R, Wu W J, Wang Q W, Tian H, Wong W Y. Dalton Trans., 2011, 40: 2314.

[16]

Numata Y, Singh S P, Islam A, Iwamura M, Imai A, Nozaki K, Han L. Adv. Funct. Mater., 2013, 23: 1817.

[17]

Chou C C, Wu K L, Chi Y, Hu W P, Yu S J, Lee G H, Lin C L, Chou P T. Ang. Chem. Int. Ed., 2011, 50: 2054.

[18]

Wu K L, Li C H, Chi Y, Clifford J N, Cabau L, Palomares E, Cheng Y M, Pan H A, Chou P T. J. Am. Chem. Soc., 2012, 134: 7488.

[19]

Brewster T P, Konezny S J, Sheehan S W, Martini L A, Schmuttenmaer C A, Batista V S, Crabtree R H. Inorg. Chem., 2013, 52: 6752.

[20]

Koenigsmann C, Ripolles T, Brennan B, Negre C, Koepf M, Durrell A, Milot R, Torre J, Crabtree R H, Batista V. Phys. Chem. Chem. Phys., 2014, 16: 16629.

[21]

Li G, Bomben P G, Robson K C, Gorelsky S I, Berlinguette C P, Shatruk M. Chem. Commun., 2012, 48: 8790.

[22]

Li G, Ray L, Glass E N, Kovnir K, Khoroshutin A, Gorelsky S I, Shatruk M. Inorg. Chem., 2012, 51: 1614.

[23]

Robertson N. Angew. Chem. Int. Ed., 2006, 45: 2338.

[24]

Stergiopoulos T, Karakostas S, Falaras P. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163: 331.

[25]

Frisch M J, Trucks G W, Schlegel H B, Scuseria GE, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr., Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam N J, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09. D01, 2009, Wallingford CT: Gaussian Inc..

[26]

Chen J, Bai F Q, Wang J, Hao L, Xie Z F, Pan Q J, Zhang H X. Dyes Pigm., 2012, 94: 459.

[27]

Becke A D. J. Chem. Phy., 1993, 98: 5648.

[28]

Hariharan P C, Pople J A. Theor. Chim. Acta, 1973, 28: 213.

[29]

Check C E, Faust T O, Bailey J M, Wright B J, Gilbert T M, Sunderlin L S. J. Phys. Chem. A, 2001, 105: 8111.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/