How mutations affecting the ligand-receptor interactions: a combined MD and QM/MM calculation on CYP2E1 and its two mutants

Yan Wang , Qingchuan Zheng , Jilong Zhang , Mo Xie , Jiuyu Zhan , Hongxing Zhang

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 1029 -1038.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 1029 -1038. DOI: 10.1007/s40242-015-5071-9
Article

How mutations affecting the ligand-receptor interactions: a combined MD and QM/MM calculation on CYP2E1 and its two mutants

Author information +
History +
PDF

Abstract

Cytochrome P450(CYP) 2E1 is a dual function monoxygenase with a crucial role in the metabolism of 6% of drugs on the market at present. The enzyme is of tremendous interest for its association with alcohol consumption, diabetes, obesity and fasting. Despite the abundant experimental mutagenesis data, the molecular origin and the structural motifs for the enzymatic activity deficiencies have not been rationalized at the atomic level. In this regard, we have investigated the effects of mutation on the structural and energetic characteristics upon single point mutations in CYP2E1, N219D and S366C. The molecular dynamics(MD) simulation combined with quantum mechanics/molecular mechanics(QM/MM) and noncovalent interaction(NCI) analysis was carried out on CYP2E1 and its two mutants. The results highlight the critical role of Phe207, which is responsible for both structural flexibility and energetic variation, shortening the gap between the theory and the experimentally observed results of enzymatic activity decrease. The underlying molecular mechanism of the enzymatic activity deficiencies for mutants may be attributed to the changes of spatial position of Phe207 in the two mutants. This work provides particular explanations to how mutations affect ligand-receptor interactions based on combined MD and QM/MM calculations. Furthermore, the mutational effects on the activity of CYP2E1 obtained in the present study are beneficial to both the experimental and the computational works of CYPs and may allow researchers to achieve desirable changes in enzymatic activity.

Keywords

Cytochrome P450(CYP) 2E1 / Molecular dynamics(MD) simulation / Quantum mechanics/molecular mechanics(QM/MM / ONIOM) calculation / Noncovalent interaction(NCI) analysis

Cite this article

Download citation ▾
Yan Wang, Qingchuan Zheng, Jilong Zhang, Mo Xie, Jiuyu Zhan, Hongxing Zhang. How mutations affecting the ligand-receptor interactions: a combined MD and QM/MM calculation on CYP2E1 and its two mutants. Chemical Research in Chinese Universities, 2015, 31(6): 1029-1038 DOI:10.1007/s40242-015-5071-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Danielson P. Current Drug Metabolism, 2002, 3: 561.

[2]

Nelson D. R. Archives of Biochemistry and Biophysics, 1999, 369: 1.

[3]

Watanabe K. P., Kawai Y. K., Ikenaka Y., Kawata M., Ikushiro S. I., Sakaki T., Ishizuka M. PloS One, 2013, 8: e75689.

[4]

Scott E. E., Halpert J. R. Trends in Biochemical Sciences, 2005, 30: 5.

[5]

Park H., Lee S., Suh J. J. Am. Chem. Soc., 2005, 127: 13634.

[6]

Walsh A. A., Szklarz G. D., Scott E. E. Journal of Biological Chemistry, 2013, 288: 12932.

[7]

Miller G. P. Expert Opin. Drug Met., 2008, 4: 1053.

[8]

Trafalis D. T., Panteli E. S., Grivas A., Tsigris C., Karamanakos P. N. Expert Opinion on Drug Metabolism & Toxicology, 2010, 6: 307.

[9]

Ioannides C., Lewis V., David F. Current Topics in Medicinal Chemistry, 2004, 4: 1767.

[10]

Nanji A. A., Zhao S., Sadrzadeh S., Dannenberg A. J., Tahan S. R., Waxman D. J. Alcoholism: Clinical and Experimental Research, 1994, 18: 1280.

[11]

Barnett C., Rudd S., Flatt P., Ioannides C. Biochemical Pharmacology, 1993, 45: 313.

[12]

Raucy J. L., Lasker J. M., Kraner J. C., Salazar D. E., Lieber C. S., Corcoran G. Molecular Pharmacology, 1991, 39: 275.

[13]

Johansson I., Ekstroem G., Scholte B., Puzycki D., Joernvall H., Ingelman-Sundberg M. Biochemistry, 1988, 27: 1925.

[14]

DeVore N. M., Meneely K. M., Bart A. G., Stephens E. S., Battaile K. P., Scott E. E. Febs Journal, 2012, 279: 1621.

[15]

Li J., Wei D. Q., Wang J. F., Li Y. X. Journal of Chemical Information and Modeling, 2011, 51: 3217.

[16]

Porubsky P. R., Battaile K. P., Scott E. E. Journal of Biological Chemistry, 2010, 285: 22282.

[17]

EMBL/GenBank/DDBJ Databases, 2006

[18]

Hu Y., Oscarson M., Johansson I., Yue Q. Y., Dahl M. L., Tabone M., Arincò S., Albano E., Ingelman-Sundberg M. Molecular Pharmacology, 1997, 51: 370.

[19]

Fairbrother K. S., Grove J., de Waziers I., Steimel D. T., Day C. P., Crespi C. L., Daly A. K. Pharmacogenetics and Genomics, 1998, 8: 543.

[20]

Solus J. F., Arietta B. J., Harris J. R., Sexton D. P., Steward J. Q., McMunn C., Ihrie P., Mehall J. M., Edwards T. L., Dawson E. P. Pharmacogenomics, 2004, 5: 895.

[21]

Liu Y., Liu B. Y., Hao P., Li X., Li Y. X., Wang J. F. Proteins: Structure, Function, and Bioinformatics, 2013, 81: 945.

[22]

Shen Z., Cheng F., Xu Y., Fu J., Xiao W., Shen J., Liu G., Li W., Tang Y. PloS One, 2012, 7: e33500.

[23]

Porubsky P. R., Meneely K. M., Scott E. E. Journal of Biological Chemistry, 2008, 283: 33698.

[24]

Discovery Studio, Accelrys Inc., San Diego, CA, 2009

[25]

Olsson M. H., Søndergaard C. R., Rostkowski M., Jensen J. H. Journal of Chemical Theory and Computation, 2011, 7: 525.

[26]

Case D. E., Darden T., Cheatham Iii T., Simmerling C., Wang J., Duke R., Luo R., Walker R., Zhang W., Merz K. AMBER 11, 2010, San Francisco: University of California.

[27]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T. M. Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas, Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09. D01, 2009, Wallingford CT: Gaussian Inc..

[28]

Rydberg P., Olsen L., Norrby P. O., Ryde U. Journal of Chemical Theory and Computation, 2007, 3: 1765.

[29]

Hornak V., Abel R., Okur A., Strockbine B., Roitberg A., Simmerling C. Proteins: Structure, Function, and Bioinformatics, 2006, 65: 712.

[30]

Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L. J. Chem. Phys., 1983, 79: 926.

[31]

Darden T., York D., Pedersen L. Journal of Chemical Physics, 1993, 98: 10089.

[32]

Shao J., Tanner S. W., Thompson N., Cheatham T. E. Journal of Chemical Theory and Computation, 2007, 3: 2312.

[33]

Humphrey W., Dalke A., Schulten K. Journal of Molecular Graphics, 1996, 14: 33.

[34]

Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E. Journal of Computational Chemistry, 2004, 25: 1605.

[35]

DeLano W. L., PyMOL, Schroclinger, New York, 2002

[36]

Amadei A., Linssen A., Berendsen H. J. Proteins: Structure, Function, and Bioinformatics, 1993, 17: 412.

[37]

Bakan A., Meireles L. M., Bahar I. Bioinformatics, 2011, 27: 1575.

[38]

Xue Q., Zhang J. L., Zheng Q. C., Cui Y. L., Chen L., Chu W. T., Zhang H. X. Langmuir, 2013, 29: 11135.

[39]

Cui Y. L., Zheng Q. C., Zhang J. L., Xue Q., Wang Y., Zhang H. X. Journal of Chemical Information and Modeling, 2013, 53(12): 3308.

[40]

Swanson J. M. J., Henchman R. H., McCammon J. A. Biophysical Journal, 2004, 86: 67.

[41]

Hou T. J., Zhang W., Case D. A., Wang W. J. Mol. Biol., 2008, 376: 1201.

[42]

Dapprich S., Komáromi I., Byun K. S., Morokuma K., Frisch M. J. Journal of Molecular Structure: Theochem., 1999, 461: 1.

[43]

Vreven T., Mennucci B., da Silva C. O., Morokuma K., Tomasi J. Journal of Chemical Physics, 2001, 115: 62.

[44]

Vreven T., Morokuma K., Farkas, Schlegel H. B., Frisch M. J. Journal of Computational Chemistry, 2003, 24: 760.

[45]

Maseras F., Morokuma K. Journal of Computational Chemistry, 1995, 16: 1170.

[46]

Vreven T., Byun K. S., Komáromi I., Dapprich S., Montgomery J. A., Morokuma K., Frisch M. J. Journal of Chemical Theory and Computation, 2006, 2: 815.

[47]

Becke A. D. J. Chem. Phys., 1993, 98: 5648.

[48]

Lee C., Yang W., Parr R. G. Physical Review B, 1988, 37: 785.

[49]

Cornell W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A. J. Am. Chem. Soc., 1995, 117: 5179.

[50]

Torrent M., Vreven T., Musaev D. G., Morokuma K., Farkas, Schlegel H. B. J. Am. Chem. Soc., 2002, 124: 192.

[51]

Vreven T., Morokuma K. Theoretical Chemistry Accounts, 2003, 109: 125.

[52]

Li J., Cross J. B., Vreven T., Meroueh S. O., Mobashery S., Schlegel H. B. Proteins: Structure, Function, and Bioinformatics, 2005, 61: 246.

[53]

Yoshizawa K., Shiota Y. J. Am. Chem. Soc., 2006, 128: 9873.

[54]

Godfrey E., Porro C. S., de Visser S. P. Journal of Physical Chemistry A, 2008, 112: 2464.

[55]

Lundberg M., Kawatsu T., Vreven T., Frisch M. J., Morokuma K. Journal of Chemical Theory and Computation, 2008, 5: 222.

[56]

Kong X., Ouyang S., Liang Z., Lu J., Chen L., Shen B., Li D., Zheng M., Li K. K., Luo C. PLoS One, 2011, 6: e25444.

[57]

Hay P. J., Wadt W. R. Journal of Chemical Physics, 1985, 82: 270.

[58]

Grimme S. Journal of Computational Chemistry, 2004, 25: 1463.

[59]

Grimme S. Journal of Computational Chemistry, 2006, 27: 1787.

[60]

Grimme S., Antony J., Ehrlich S., Krieg H. Journal of Chemical Physics, 2010, 132: 154104.

[61]

Johnson E. R., Keinan S., Mori-Sanchez P., Contreras-Garcia J., Cohen A. J., Yang W. J. Am. Chem. Soc., 2010, 132: 6498.

[62]

Lu T., Chen F. Journal of Computational Chemistry, 2012, 33: 580.

[63]

Raeburn J., Alston B., Kroeger J., McDonald T. O., Howse J. R., Cameron P. J., Adams D. J. Mater. Horiz., 2014, 1: 241.

[64]

Sun Z., Li Z., He Y., Shen R., Deng L., Yang M., Liang Y., Zhang Y. J. Am. Chem. Soc., 2013, 135: 13379.

[65]

Joosten R. P., Te Beek T. A., Krieger E., Hekkelman M. L., Hooft R. W., Schneider R., Sander C., Vriend G. Nucleic Acids Research, 2011, 39: D411.

[66]

McGaughey G. B., Gagné M., Rappé A. K. Journal of Biological Chemistry, 1998, 273: 15458.

[67]

Wang Y., Zheng Q. C., Zhang J. L., Cui Y. L., Xue Q., Zhang H. X. Journal of Molecular Modeling, 2013, 19: 5213.

[68]

Collom S. L., Laddusaw R. M., Burch A. M., Kuzmic P., Perry M. D., Miller G. P. Journal of Biological Chemistry, 2008, 283: 3487.

[69]

Wang Y., Zheng Q. C., Kong C. P., Tian Y., Zhan J., Zhang J. L., Zhang H. X. Mol. Biosyst., 2015, 11(1): 252.

[70]

Xue W., Jin X., Ning L., Wang M., Liu H., Yao X. Journal of Chemical Information and Modeling, 2012, 53: 210.

[71]

Yang Y., Shen Y., Liu H., Yao X. Journal of Chemical Information and Modeling, 2011, 51: 3235.

[72]

Sun X., Feng Z., Zhang L., Hou T., Li Y. PloS One, 2014, 9: e107696.

[73]

Wu Y. J., Cui Y. L., Zheng Q. C., Zhang H. X. Chem. J. Chinese Universities, 2014, 35(12): 2605.

[74]

Wu Y., Zheng Q., Xu Y., Chu W., Cui Y., Wang Y., Zhang H. Chem. Res. Chinese Universites, 2014, 30(6): 1011.

[75]

Xu Y., Cui Y. L., Zheng Q. C., Zhang H. X., Sun C. C. Chem. J. Chinese Universities, 2013, 34(5): 1226.

[76]

Meng X. Y., Li Z., Niu R. J., Zhang H. X., Zheng Q. C. Chem. Res. Chinese Universites, 2012, 28(1): 137.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/