Synthesis of long chain fatty acids acylated coumarin glycoside esters with lipase as catalyst

Duo Liu , Shuanglian Cai , Fangjian Luan , Qiuan Wang

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (4) : 534 -538.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (4) : 534 -538. DOI: 10.1007/s40242-015-5048-8
Article

Synthesis of long chain fatty acids acylated coumarin glycoside esters with lipase as catalyst

Author information +
History +
PDF

Abstract

A series of novel coumarin glycoside esters(19) was synthesized through the acylation reaction of 4-methylcoumarin-7-O-β-D-glucoside(11) with different long chain fatty acids catalyzed by lipase in organic medium. The acylation occurred regioselectively at the 6′-OH of glycosyl moiety. The enzymatic synthesis was optimized to achieve 54%—70% yield using immobilized lipase(Novozym 435, 10 mg/mL) as catalyst and acetone and pyridine( 9:1, volume ratio, water content<1%) as solvent with an acyl donor/coumarin glycoside molar ratio of 10:1 at a temperature of 40—50 °C for 96 h. All the synthesized compounds were confirmed.

Keywords

Coumarin glycoside / Lipase-catalyzed acylation / Long chain fatty acid / Regioselective acylation

Cite this article

Download citation ▾
Duo Liu, Shuanglian Cai, Fangjian Luan, Qiuan Wang. Synthesis of long chain fatty acids acylated coumarin glycoside esters with lipase as catalyst. Chemical Research in Chinese Universities, 2015, 31(4): 534-538 DOI:10.1007/s40242-015-5048-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Patil P. O., Bari S. B., Firke S. D., Deshmukh P. K., Donda S. T. Bioorg. Med. Chem, 2013, 21: 2434.

[2]

Hu Y. F., Guo Z., Lue B. M., Xu X. B. J. Agric. Food Chem, 2009, 57: 3845.

[3]

Yang S. P., Han L. J., Pan Y., Wang D. Q., Wang N. N., Wang T., Chem J. Chinese Universities, 2013, 34(34): 364.

[4]

Olomola T. O., Klein R., Mautsa N., Sayed Y., Kaye P. T. Bioorg. Med. Chem, 2013, 21: 1964.

[5]

Touisni N., Maresca A., Mcdonald P. C., Lou Y. M., Scozzafava A., Dedhar S., Winum J. Y., Supuran C. T. J. Med. Chem, 2011, 54: 8271.

[6]

Sandhu S., Bansal Y., Silakari O., Bansal G. Bioorg. Med. Chem, 2014, 22: 3806.

[7]

Maresca A., Supuran C. T. Bioorg. Med. Chem. Lett, 2010, 20: 4511.

[8]

Wu Z., Fu X. L., Yang N., Wang Q. A. Chem. Res. Chinese Universities, 2013, 29(29): 460.

[9]

Chebil L., Anthoni J., Humeau C., Gerardin C., Engassser J. M., Ghoul M. J. Agric. Food. Chem, 2007, 55: 9496.

[10]

Salem J. H., Humeau C., Chevalot I., Harscoat-Schiavo C., Vanderesse R., Blanchard F., Fick M. Process Biochem, 2010, 45: 382.

[11]

Celiz G., Daz M. Process Biochem, 2011, 46: 94.

[12]

Mellou F., Lazari D., Skaltsa H., Tselepis A. D., Kolisis F. N., Stamatis H. J. Biotechnol, 2005, 116: 295.

[13]

Ziaullah, Bhullar K. S., Warnakulasuriya S. N., Rupasinghe H. P. V. Bioorg. Med. Chem, 2013, 21: 684.

[14]

Park S., Kazlauskas R. J. J. Org. Chem, 2001, 66: 8395.

[15]

Danieli B., Luisetti M., Sampognaro G., Carrea G., Riva S. J. Mol. Catal. B: Enzym, 1997, 3: 193.

[16]

Zhang X., Li L., Huang J. R., Chen L., Li X. X. Adv. Mater. Res, 2012, 554-556: 1350.

[17]

Tongboriboon K., Cheirsilp B., H-Kittikun A. J. Mol. Catal. B: Enzym, 2010, 67: 52.

[18]

Ishihara K., Nishimura Y., Kubo T., Okada C., Hamada H. Plant Biotechnology, 2002, 19(19): 211.

[19]

Yoshimoto K., Itatani Y., Tsuda Y. Chem. Pharm. Bull, 1980, 28: 2065.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/