Hierarchical TiO2 flower-spheres with large surface area and high scattering ability: an excellent candidate for high efficiency dye sensitized solar cells

Jian Ma , Shiting Yao , Pengfei Cheng , Sisi Du , Yanfeng Sun , Fengmin Liu , Geyu Lu

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 841 -845.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 841 -845. DOI: 10.1007/s40242-015-5037-y
Article

Hierarchical TiO2 flower-spheres with large surface area and high scattering ability: an excellent candidate for high efficiency dye sensitized solar cells

Author information +
History +
PDF

Abstract

Hierarchical TiO2 flower-spheres assembled from porous nanosheets-stacked of nanoparticles were synthesized by a simple hydrothermal method with one-step. The as-prepared TiO2 flower-spheres showed a diameter range from 200 nm to 550 nm and a large surface area of 188 m2/g. A double layer photoanode made of P25 nanoparticles and as-prepared TiO2 flower-spheres was fabricated for the dye sensitized solar cells(DSSCs). The efficient light scattering and dye absorption of the photoanode can be attributed to the top-layer of hierarchical TiO2 flower-spheres. DSSCs based on the double layers photoanode exhibit a higher energy conversion efficiency of 8.11% with a short-circuit photocurrent density of 17.87 mA/cm2, indicating that there is an increase of 38% in the conversion efficiency compared to those based on electrode P25(5.91%, 14.09 mA/cm2).

Keywords

Dye sensitized solar cell / TiO2 / Double layered photoanode / High specific surface area / Inhomogeneous size

Cite this article

Download citation ▾
Jian Ma, Shiting Yao, Pengfei Cheng, Sisi Du, Yanfeng Sun, Fengmin Liu, Geyu Lu. Hierarchical TiO2 flower-spheres with large surface area and high scattering ability: an excellent candidate for high efficiency dye sensitized solar cells. Chemical Research in Chinese Universities, 2015, 31(5): 841-845 DOI:10.1007/s40242-015-5037-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

O’Regan B., Grätzel M. Nature, 1991, 353: 737.

[2]

Tulloch G. E. J. Photochem. Photobiol. A: Chem., 2004, 164: 209.

[3]

Qiu Y. C., Chen W., Yang S. H. Angew. Chem. Int. Ed., 2010, 49: 3675.

[4]

Chen D. H., Huang F. Z., Cheng Y. B., Caruso R. A. Adv. Mater., 2009, 21: 2206.

[5]

Liao J. Y., Lei B. X., Kuang D. B., Su C. Y. Energy Environ. Sci., 2011, 4: 4079.

[6]

Van L. J., Frank A. J. J. Phys. Chem. B, 2001, 105: 11194.

[7]

Liu B., Aydil E. S. J. Am. Chem. Soc., 2009, 131: 3985.

[8]

Wu J. J., Liu S. C. J. Phys. Chem. B, 2002, 106: 9546.

[9]

Mor G. K., Shankar K., Paulose M., Varghese O. K., Grimes C. A. Nano Lett, 2006, 6: 215.

[10]

Zhu K., Neale N. R., Miedaner A., Frank J. A. Nano Lett, 2007, 7: 69.

[11]

Feng X. J., Shankar K., Paulose M., Grimes C. A. Angew. Chem. Int. Ed., 2009, 48: 8239.

[12]

Hosono E., Fujihara S., Kakiuchi K., Imai H. J. Am. Chem. Soc, 2004, 126: 7790.

[13]

Barbé C. J., Arendse F., Comte P., Jirousek M., Lenzmann F., Shklover V., Grätzel M. J. Am. Chem. Soc., 1997, 80: 3157.

[14]

Hore S., Vetter C., Kern R., Smit H., Hinsch A. Sol. Energy Mater. Sol. Cells, 2006, 90: 1176.

[15]

Mie G. A., Phys., 1908, 330, 377

[16]

Chen H., Xu X. Q., Ouyang S., Kako T., Ye J. H. J. Phys. Chem. C, 2012, 116: 3833.

[17]

Sauvage F., Chen D. H., Comte P., Huang F. Z., Heiniger L. P., Cheng Y. B., Caruso R. A., Gräetzel M. ACS Nano, 2010, 4: 4420.

[18]

Wang Y. F., Li J. W., Hou Y. F., Yu X. Y., Su C. Y., Kuang D. B. Chem. Eur. J., 2010, 29: 8620.

[19]

Zhang Q. F., Chou T. R., Russo B., Jenekhe S. A., Cao G. Z. Angew. Chem. Int. Ed., 2008, 47: 2436.

[20]

Yan K. Y., Qiu Y. C., Chen W., Zhang M., Yang S. H. Energy Environ. Sci, 2011, 4: 2168.

[21]

Grätzel M. Accounts of Chem. Research, 2009, 42: 1788.

[22]

Feng L., Jia J. G., Fang Y. Y., Zhou X. W., Lin Y. Electrochimica Acta, 2013, 87: 629.

[23]

Zhao Y. L., Song D. M., Qiang Y. H., Gu X. Q., Zhu L., Song C. B. App. Surface Sci., 2014, 309: 85.

[24]

Wang G. X., Zhu X. J., Yu J. G. Journal of Power Sources, 2015, 278: 344.

[25]

Cheng P. F., Du S. S., Cai Y. X., Sun P., Zheng J., Lu G. Y. J. Phys. Chem. C, 2013, 117: 24150.

[26]

Ito S., Chen P., Comte P., Nazeeruddin M. K., Liska P., Péchy P., Grätzel M. Prog. Photovolt: Res. Appl., 2007, 15: 603.

[27]

Cheng P. F., Sun P., Du S. S., Cai Y. X., Li X. W., Wang Z. Y., Zheng J., Lu G. Y. RSC Adv, 2014, 4: 23396.

[28]

Yang L., Lin Y., Jia J. G., Xiao X. R., Li X. P., Zhou X.W. J. Power Sources, 2008, 182: 370.

[29]

Cheng P. F., Cai Y. X., Du S. S., Sun P., Lu G. Y., Zheng J. RSC Adv, 2013, 3: 23389.

[30]

Kim Y. J., Lee M. H., Kim H. J., Lim G., Choi Y. S., Park N. G., Kim K., Lee W. I. Adv. Mater., 2009, 21: 3668.

[31]

Gao F., Wang Y., Shi D., Zhang J., Wang M. K., Jing X. Y., Humphry-Baker R., Wang P., Zakeeruddin S. M., Grätzel M. J. Am. Chem. Soc., 2008, 130: 10720.

[32]

van de Hulst H. C. Q. J. Roy. Meteor. Soc., 1957, 84: 198.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/