Surface modification of 316L stainless steel by grafting methoxy poly(ethylene glycol) to improve the biocompatibility

Yanlong Xiao , Lei Zhao , Yongfeng Shi , Ning Liu , Yongli Liu , Bin Liu , Qinghua Xu , Chaoliang He , Xuesi Chen

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (4) : 651 -657.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (4) : 651 -657. DOI: 10.1007/s40242-015-5027-0
Article

Surface modification of 316L stainless steel by grafting methoxy poly(ethylene glycol) to improve the biocompatibility

Author information +
History +
PDF

Abstract

Percutaneous coronary intervention(PCI) has become an important method for the treatment of the patients with coronary heart disease; however, problems, such as vascular endothelial inflammation, late thrombosis, and stent restenosis still exist as a result of poor biocompatibility of the materials. To enhance the biocompatibility, methoxy poly(ethylene glycol)(mPEG) was immobilized on the surface of AISI 316 grade stainless steel(SS)(AISI: American Iron and Steel Institute). First, silanized mPEG was synthesized by the direct coupling of mPEG with 3-isocyanatopropyltriethoxysilane(IPTS) via urethane bonds, and the silanized mPEG was then grafted on the surface of SS that was hydroxylated with piranha solution. The results obtained from contact angle goniometry, X-ray photoelectron spectroscopy(XPS), and atomic force microscopy(AFM) confirm that the mPEG modified steel contained more C and Si and less Fe and Cr on its surface, exhibiting a morphological change and decrease in the contact angle. The biocompatibility of the mPEG modified SS was evaluated with fibrinogen adsorption, platelet activation and adhesion, and human umbilical vein endothelial cell(HUVEC) adhesion. Fibrinogen adsorption, platelet activation, and adhesion were clearly suppressed on the surface-modified steel. In addition, human umbilical vein endothelial cell(HUVEC) could adhere and proliferate on the surface of the mPEG-modified SS. This study indicates that the modification of 316L SS with mPEG could enhance the biocompatibility and provide a primary experimental foundation for the development of next-generation coronary stent materials for clinical application.

Keywords

316L stainless steel / Methoxy poly(ethylene glycol)(mPEG) / Surface modification / Biocompatibility

Cite this article

Download citation ▾
Yanlong Xiao, Lei Zhao, Yongfeng Shi, Ning Liu, Yongli Liu, Bin Liu, Qinghua Xu, Chaoliang He, Xuesi Chen. Surface modification of 316L stainless steel by grafting methoxy poly(ethylene glycol) to improve the biocompatibility. Chemical Research in Chinese Universities, 2015, 31(4): 651-657 DOI:10.1007/s40242-015-5027-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hamilos M, Ribichini F, Ostojic M C, Ferrero V, Orlic D, Vassanelli C, Karanovic N, Sarno G, Cuisset T, Vardas P E, Wijns W. J. Cardiovasc. Transl. Res., 2014, 7(4): 406.

[2]

Togni M, Windecker S, Cocchia R, Wenaweser P, Cook S, Billinger M, Meier B, Hess O M. Journal of the American College of Cardiology, 2005, 46(2): 231.

[3]

Kim J W, Suh S Y, Choi C U, Na J O, Kim E J, Rha S W, Park C G, Seo H S, Oh D J. JACC Cardiovasc Interv., 2008, 1(1): 65.

[4]

Zhang C H, Xu X H, Zhu T B, Yan X L, Yao K D. Materials Review, 2007, 21(2): 120.

[5]

Taylor A., Ed.: Sigwart U., Chapter Metals in Endoluminal Stenting, W. B. Saunders Company Ltd., London, 1996, 28

[6]

Lee J H, Lee H B, Andrade J D. Prog. Polym. Sci., 1995, 20(6): 1043.

[7]

Zhang F, Kang E T, Neoh K G, Wang P, Tan K L. Biomaterials, 2001, 22(12): 1541.

[8]

Tosatti S, Paul S M, Askendal A, van de Vondele S, Hubbell J A, Tengvall P, Textor M. Biomaterials, 2003, 24(27): 4949.

[9]

Xu Z K, Nie F Q, Qu C, Wan L S, Wu J, Yao K. Biomaterials, 2005, 26(6): 589.

[10]

Okner R, Domba A J, Mandler D. New J. Chem., 2009, 33: 1596.

[11]

Vahter M, Berglund M, Akesson A, Lidén C. Environ. Res., 2002, 88(3): 145.

[12]

Denkhaus E, Salnikow K. Crit. Rev. Oncol. Hematol., 2002, 42(1): 35.

[13]

Fleming C J, Burden A D, Forsyth A. Contact Dermatitis, 1999, 41(5): 251.

[14]

Harris J M. Poly(ethyleneglycol) Chemistry, 1992, New York: Plenum Press, 1.

[15]

Zdyrko B, Klep V, Li X, Kang Q, Minko S, Wen X, Luzinov I. Mater. Sci. Eng. C, 2009, 29(3): 680.

[16]

Murthy R, Shell C E, Grunlan M A. Biomaterials, 2009, 30(13): 2433.

[17]

Kang C K, Lee Y S. J. Mater. Sci. Mater. Med., 2007, 18(7): 1389.

[18]

Hu X Y, Zhang Y X, Yu Q, Chen H. Chem. J. Chinese Universities, 2009, 30(3): 613.

[19]

Yang J, Gao J C, Chang P. Journal of Functional Materials, 2008, 39(5): 811.

[20]

Seongbong J, Park K. Biomaterials, 2000, 21(6): 605.

[21]

Wei J, Ravn D B, Gram L, Kingshotta P. Colloids and Surfaces B: Biointerfaces, 2003, 32(4): 275.

[22]

Zhao T, Li Y, Gao Y, Xiang Y, Chen H, Zhang T. Mater Sci. Mater Med., 2011, 22(10): 2311.

[23]

Johnson C A Jr., Snyder T A, Woolley J R, Wagner W R. Artif. Organs, 2008, 32(2): 136.

[24]

Yu H K. Shanghai Measurement and Testing, 2003, 30(4): 45.

[25]

Yang J, Gao J C, Chang P, Wang J H. Plasma Science and Technology, 2008, 10(2): 189.

[26]

Thierry B, Merhi Y, Bilodeau L, Trépanier C, Tabrizian M. Biomaterials, 2002, 23(14): 2997.

[27]

Eidelman R S, Hennekens C H. Eur. Heart J., 2003, 24(6): 499.

[28]

van Enmckevort H J, Dass D V, Langdon A G. Coll. Inter. Sci., 1984, 98: 138.

[29]

Goodman S L. J. Biomed. Mater. Res., 1999, 45(3): 240.

[30]

Ko T M, Lin J C, Cooper L. Biomaterials, 1993, 14(9): 657.

[31]

Huang J. Investigation of Biocompatibility of Polyethersulf One and Sulfonated Olyethersulfone Used as Blood Purification Membranes, 1999, Chengdu: Sichuan University.

[32]

Ko Y G, Kim Y H, Park K D, Lee H J, Lee W K, Park H D, Kim S H, Lee G S, Ahn D G. Biomaterials, 2001, 22: 2115.

[33]

Xu Z K, Nie F Q, Qu C, Wan L S, Wu J, Yao K. Biomaterials, 2005, 26(6): 589.

[34]

Saito T, Hasebe T, Yohena S, Matsuoka Y, Kamijo A, Takahashi K, Suzuki T. Diam. Relat. Mater., 2005, 14(3–7): 1116.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/