Hydrothermal synthesis of a new zinc phosphite (C5H7N2)2·[Zn3(HPO3)4] with intersecting 8- and 12-ring channels

Zhaojun Dong , Yan Yan , Wenqing Zhang , Yu Wang , Jiyang Li

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (4) : 498 -502.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (4) : 498 -502. DOI: 10.1007/s40242-015-5021-6
Article

Hydrothermal synthesis of a new zinc phosphite (C5H7N2)2·[Zn3(HPO3)4] with intersecting 8- and 12-ring channels

Author information +
History +
PDF

Abstract

Using 4-aminopyridine as the structure-directing agent(SDA), a new open-framework zinc phosphite, (C5H7N2)2·[Zn3(HPO3)4](ZnHPO-CJ70), was synthesized under hydrothermal condition. Single-crystal X-ray diffraction analysis reveals that ZnHPO-CJ70 is constructed by the strictly alternating ZnO4 tetrahedra and HPO3 pseudo-pyramids, with their vertexes linked to generate a three-dimensional(3D) open framework with intersecting 8- and 12-ring channels. Further characterizations of ZnHPO-CJ70 were performed by means of X-ray powder diffraction(XRD), elemental analysis(ICP, CHN), infrared spectroscopy(IR) and thermogravimetric(TG) analyses. The results of luminescent test shows that ZnHPO-CJ70 exhibits strong fluorescence emissions in the solid state at room temperature.

Keywords

Hydrothermal synthesis / Zinc phosphite / Open framework / Photoluminescence

Cite this article

Download citation ▾
Zhaojun Dong, Yan Yan, Wenqing Zhang, Yu Wang, Jiyang Li. Hydrothermal synthesis of a new zinc phosphite (C5H7N2)2·[Zn3(HPO3)4] with intersecting 8- and 12-ring channels. Chemical Research in Chinese Universities, 2015, 31(4): 498-502 DOI:10.1007/s40242-015-5021-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Y, Yu J H. Chem. Rev., 2014, 114(14): 7268.

[2]

Li Y, Yu J H, Xu R R, Baerlocher C, McCusker L B. Angew. Chem. Int. Ed., 2008, 47: 4401.

[3]

Li Y, Yu J H, Xu R R. Angew. Chem. Int. Ed., 2013, 52: 1673.

[4]

Mallouk T E, Gavin J A. Acc. Chem. Res., 1998, 31(5): 209.

[5]

Seo J S, Whang D, Lee H, Jeon Y J, Kim K. Nature, 2000, 404: 982.

[6]

Cao G, Garcia M E, Alcalá M, Burgess L F, Mallouk T E. J. Am. Chem. Soc., 1992, 114(19): 7574.

[7]

Joy A, Uppili S, Netherton M R, Scheffer J R, Ramamurthy V. J. Am. Chem. Soc., 2000, 122(4): 728.

[8]

Yu J H, Xu R R. Chem. Soc. Rev., 2006, 35: 593.

[9]

Yu J H, Xu R R. Acc. Chem. Res., 2010, 43(9): 1195.

[10]

Wang Z P, Yu J H, Xu R R. Chem. Soc. Rev., 2012, 41: 1729.

[11]

Song X W, Li Y, Gan L, Wang Z P, Yu J H, Xu R R. Angew. Chem. Int. Ed., 2009, 48: 314.

[12]

Chiang R K, Chuang N T. J. Solid State Chem., 2005, 178(10): 3040.

[13]

Luo X C, Luo D B, Gong M C, Chen Y Q, Lin Z E. Cryst. Eng. Comm., 2011, 13(11): 3646.

[14]

Zhao L, Li J Y, Chen P, Li G H, Yu J H, Xu R R. Chem. Mater., 2008, 20(1): 17.

[15]

Xing H Z, Yang W T, Su T, Li Y, Xu J, Nakano T, Yu J H, Xu R R. Angew. Chem. Int. Ed., 2010, 49(13): 2328.

[16]

Luo X C, Luo D B, Zeng H M, Gong M C, Chen Y Q, Lin Z E. Inorg. Chem., 2011, 50(18): 8697.

[17]

Lin H Y, Chin C Y, Huang H L, Huang W Y, Sie M J, Huang L H, Lee Y H, Lin C H, Lii K H, Bu X H, Wang S L. Science, 2013, 339: 811.

[18]

Harrison W T A. J. Solid State Chem., 2001, 160(1): 4.

[19]

Harrison W T A, Phillips M L F, Nenoff T M. Int. J. Inorg. Mater., 2001, 3(7): 1033.

[20]

Lin Z E, Zhang J, Zheng S T, Yang G Y. J. Mater. Chem., 2004, 14: 1652.

[21]

Chen W B, Li N, Xiang S H. J. Solid State Chem., 2004, 177(9): 3229.

[22]

Wang X L, Yan Y, Wu J B, Zou Y C, Zhang C Q, Li J Y. Chem. J. Chinese Universities, 2014, 35(6): 1142.

[23]

Fernández S, Mesa J L, Lezama L, Arriortua M I, Rojo T. Chem. Mater., 2002, 14(5): 2300.

[24]

Fernández S, Mesa J L, Pizarro J L, Lezama L, Arriortua M I, Rojo T. Chem. Mater., 2003, 15(5): 1204.

[25]

Zhang D, Yue H J, Shi Z, Guo M, Feng S H. Micropor. Mesopor. Mater., 2005, 82(1/2): 209.

[26]

Fan J, Yee G T, Wang G B, Hanson B E. Inorg. Chem., 2006, 45(2): 599.

[27]

Li G J, Xing Y, Song S Y. J. Solid State Chem., 2008, 181(4): 943.

[28]

Liu X C, Xing Y, Liu X Z. Cryst. Eng. Comm, 2010, 12: 383.

[29]

Liu X C, Xing Y, Wang X L, Xu H B, Liu X Z, Shao K Z, Su Z M. Chem. Commun., 2010, 46: 2614.

[30]

Mandal S, Pati S K, Green M A, Natarajan S. Chem. Mater., 2005, 17(3): 638.

[31]

Fan Y, Song T Y, Li G H, Shi Z, Yu G H, Xu J N, Feng S H. Inorg. Chem. Commun., 2005, 8(8): 661.

[32]

Fernández S, Mesa J L, Pizarro J L, Lezama L, Arriortua M I, Olazcuaga R, Rojo T. Chem. Mater., 2000, 12(8): 2092.

[33]

Fernández S, Pizarro J L, Mesa J L, Lezama L, Olazcuaga R, Rojo T. Inorg. Chem., 2001, 40(14): 3476.

[34]

Li N, Xiang S H. J. Mater. Chem., 2002, 12: 1397.

[35]

Li N, Ma Y F, Xiang S H, Guan N J. Chem. Mater., 2006, 18(4): 975.

[36]

Lu A L, Song H B, Li N, Xiang S H, Guan N J, Wang H G. Chem. Mater., 2007, 19(17): 4142.

[37]

Xiang Y, Zhang LW, Chen W H, Chen J Z, Zeng Q X. Z. Anorg. Allg. Chem., 2007, 633(10): 1727.

[38]

Harrison W T A, Phillips M L F, Stanchfield J, Nenoff T M. Inorg. Chem., 2001, 40(5): 895.

[39]

Liang J, Li J Y, Yu J H, Chen P, Fang Q R, Sun F X, Xu R R. Angew. Chem. Int. Chem., 2006, 45(16): 2546.

[40]

Lai Y L, Lii K H, Wang S L. J. Am. Chem. Soc., 2007, 129(17): 5350.

[41]

Gordon L E, Harrison W T A. Inorg. Chem., 2004, 43(6): 1808.

[42]

Liu L, Zhang L R, Wang X F, Li G H, Liu Y L, Pang W Q. Dalton Trans., 2008, 2009.

[43]

Sheldrick G M. SAINT, 2000, Madison, WI: Bruker AXS Inc..

[44]

Sheldrick G M. SHELXTL-97, 2000, Madison, WI: Bruker AXS Inc..

[45]

Pan J X, Zheng S T, Yang G Y. Crystal Growth & Design, 2005, 5(1): 237.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/