Template synthesis and characterization of Cu2O/TiO2 coaxial nanocable for photocatalysis

Hongzhi Wang , Ning Liu , Jing Lu , Suwei Yao , Shisheng Jiang , Weiguo Zhang

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 846 -850.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 846 -850. DOI: 10.1007/s40242-015-5019-0
Article

Template synthesis and characterization of Cu2O/TiO2 coaxial nanocable for photocatalysis

Author information +
History +
PDF

Abstract

Coaxial nanocable consisted of p-type Cu2O nanowires and n-type TiO2 nanotubes arrays was prepared in the porous anodic aluminum oxide(AAO) template via the sol-gel method and subsequent electrodeposition method. X-ray diffraction analysis identified an anatase structure of the TiO2 nanotubes and cubic structure of the Cu2O nanowires. The obtained samples were also characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM) and energy dispersive X-ray spectroscopy(EDS). The diffrence of open circuit potential of the coaxial nanocable electrode was larger than that of the TiO2 nanotubes electrode under ultraviolet illumination, which means doping with Cu2O could improve the photovoltage effectively. Meanwhile, nanocable arrays exhibited a high activity for photodegrading Rhodamine B under Xe lamp irradiation and the photocatalysis degradation efficiency was up to 98.69% after degradation for 7 h. The enhanced photocatalytic activity could be attributed to the high migration efficiency of photoinduced electrons, which may suppress the charge recombination effectively.

Keywords

TiO2 / Cu2O / Coaxial nanocable / Heterojunction / Photocatalysis

Cite this article

Download citation ▾
Hongzhi Wang, Ning Liu, Jing Lu, Suwei Yao, Shisheng Jiang, Weiguo Zhang. Template synthesis and characterization of Cu2O/TiO2 coaxial nanocable for photocatalysis. Chemical Research in Chinese Universities, 2015, 31(5): 846-850 DOI:10.1007/s40242-015-5019-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Subarna B., Susanta K. M., Prajna P. D., Mano M. Chem. Mater., 2008, 20(21): 6784.

[2]

Xi Y. Y., Zhou J. Z., Guo H. H. Chem. Phys. Lett., 2005, 412(1): 60.

[3]

Lu X. F., Mao H., Zhang W. J. Nanotechnology, 2007, 18(2): 025604.

[4]

He X. Z., Quan X. Z., Zhang X. Appl. Phys. Lett., 2003, 83(9): 1689.

[5]

Feng Y., Yin J. H., Chen M. H., Song M. X., Su B., Lei Q. Q. Mater. Lett., 2013, 96: 113.

[6]

Ke C., Cai F. G., Yang F., Cheng C. H., Zhao Y. Chem. J. Chinese Universities, 2013, 34(2): 423.

[7]

Zhou W., Yin Z., Du Y., Huang X., Zeng Z., Fan Z., Liu H., Wang J., Zhang H. Small, 2013, 9(1): 140.

[8]

Yuan J. J., Li H. D., Wang Q. L., Cheng S. H., Zhang X. K., Yu H. J., Zhu X. R., Xie Y. M. Chem. Res. Chinese Universities, 2014, 30(1): 18.

[9]

Tang Y. W., Chen Z. J., Jia Z. J., Zhang L. S., Li J. L. Mater. Lett., 2005, 59(4): 434.

[10]

Liu Y., Ji H. W., Zhou D. F., Zhu X. F., Li Z. H. Chem. J. Chinese Universities, 2014, 35(1): 19.

[11]

Tan Y. W., Xue X. Y., Peng Q., Zhao H., Wang T. H., Li Y. D. Nano Letters, 2007, 7(12): 3723.

[12]

Zhang Z., Chen A. P., Ma L., He H. B., Li C. Z. Chem. J. Chinese Universities, 2013, 34(3): 656.

[13]

Liu Y., Yu L., Wei Z. G., Pan Z. C., Zou Y. D., Xie Y. H. Chem. J. Chinese Universities, 2013, 34(2): 434.

[14]

Du S. S., Cheng P. F., Sun P., Wang B., Cai Y. X., Liu F. M., Zheng J., Lu G. Y. Chem. Res. Chinese Universities, 2014, 30(4): 661.

[15]

De Jongh P. E., Vanmaekelbergh D., Kelly J. J. Chem. Mater., 1999, 11(12): 3512.

[16]

Xiao H., Ai Z., Zhang L. J. Phy. Chem. C, 2009, 113(38): 16625.

[17]

Hao Y. Z., Sun B., Luo C., Fan L. X., Pei J., Li Y. P. Chem. J. Chinese Universities, 2014, 35(1): 127.

[18]

Lin P., Chen X., Yan X., Zhang Z., Yuan H., Li P., Zhao Y., Zhang Y. Nano Research, 2014, 7(6): 860.

[19]

Zheng Z. K., Huang B. B., Wang Z. Y., Guo M., Qin X. Y., Zhang X. Y. J. Mater. Chem., 2011, 21(25): 9079.

[20]

Michikazu H., Takeshi K., Mutsuko K., Sigeru I., Kiyoaki S., Akira T., Junko N., Kazunari D. Chem. Commun., 1998, 3: 357.

[21]

Nageh K. A., Craig A. Grimes, Mater. Lett., 2011, 65(12): 1949.

[22]

Zhang Y. G., Ma L. L., Li J. L., Yu Y. Environm. Sci. Technol., 2007, 41(17): 6264.

[23]

Hou Y., Li X. Y., Zhou X. J., Quan X., Chen G. H. Appl. Phys. Lett., 2009, 95(9): 09310.

[24]

Zhuang P. Q., Xiao Z. W., Zhu X. D. Electronic Components and Materials, 2011, 30(8): 35.

[25]

Bessekhouad Y., Robert D., Weber J. V. Catalysis Today, 2005, 101(3): 315.

[26]

Kramm B., Laufer A., Reppin D., Kronenberger P., Hering A. Appl. hys. Lett., 2012, 100(9): 094102.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/