PDF
Abstract
Molecular glass resist has been considered as one of the best choices for a new generation of lithography. In this work, a new type of photoactive compound was obtained by the esterification of tannic acid with 2-diazo-1-naphthoquinone-4-sulfonyl chloride(2,1,4-DNQ-Cl) and ditertbutyl dicarbonate. The new obtained compound possessed both a photosensitive group of diazonaphthoquinone sulfonate(2,1,4-DNQ) and a group of acidolytic protection. Upon the irradiation of the compound under 365 nm light, the former group was photolyzed and converted into indene carboxylic acid along with a small amount of sulfonic acid, which could lead to the deprotection of the latter group. As a result, a novel i-line molecular glass photoresist was formed with the chemical modification of tannic acid. The experimental results show that the modificated compound had a fair solubility in many organic solvents. The lithographic performance of the resist was evaluated on an i-line exposure system with high photosensitivity and resolution as well.
Keywords
Tannic acid
/
2,1,4-Diazonaphthoquinone(DNQ) sulfonate
/
I-Line resist
/
Chemically amplified
Cite this article
Download citation ▾
Qi Wei, Liyuan Wang.
Novel one-component positive-tone chemically amplified i-line molecular glass photoresist based on tannic acid.
Chemical Research in Chinese Universities, 2015, 31(4): 585-589 DOI:10.1007/s40242-015-5016-3
| [1] |
Hanabata M. Advanced Materials for Optics and Electronics, 1994, 4(2): 75.
|
| [2] |
Abid M I, Wang L, Zhang X, Xu Y. Chem. Res. Chinese Universities, 2013, 29(5): 1006.
|
| [3] |
Chen M, Li Y C, Hong X Y, Jiao X M, Cheng A P. Chem. J. Chinese Universities, 2000, 21(9): 1482.
|
| [4] |
Hanabata M. Adv. Mater. Opt. Electr., 1994, 4(2): 75.
|
| [5] |
Hanabata M, Oi F, Furuta A. Polym. Eng. Sci., 1993, 32: 1494.
|
| [6] |
Wanat S F, Plass R R, Rahman M D. J. Micro/Nanolithogr, MEMS, and MOEMS, 2008, 7(3): 033008/1.
|
| [7] |
Khanna D N, Durham D L, Seyedi F, Lu P H, Perera T. Polym. Eng. Sci., 1992, 32: 1500.
|
| [8] |
Hanabata M, Oi F, Furuta A. Polym. Eng. Sci., 1992, 32(20): 1494.
|
| [9] |
Hanabata M, Furuta A. J. Vac. Sci. Technol., 1991, 9(2): 254.
|
| [10] |
Hanabata M, Uetani Y, Furuta A. J. Vac. Sci. Technol., 1989, 4: 640.
|
| [11] |
Hanabata M, Furuta A, Uemura Y. SPIE Advances in Resist Technology and Processing IV, 1987, 771: 85.
|
| [12] |
Hanabata M, Oi F, Furuta A. SPIE Advances in Resist Technology and Processing, 1991, 1466: 132.
|
| [13] |
Yang G Q, Xu J, Chen L, Wang S Q, Li S Y. Process for Preparation of Bisphenol Skeleton Derivatives as Molecular Glass Photoresist of Their Application., 2013.
|
| [14] |
Kudo H, Suyama Y, Oizumi H. J. Mater Chem., 2010, 20: 4445.
|
| [15] |
Mori H, Nomura E, Hosoda A. Macromol. Rapid Commun., 2006, 27: 1792.
|
| [16] |
Yoshiiwa M, Kageyama H, Shirota Y. Appl. Phys. Lett., 1996, 69: 2605.
|
| [17] |
Kadota T, Kageyama H, Wakaya F, Gamo K, Shirota Y. J. Photopolym. Sci. Technol., 1998, 11(1): 147.
|
| [18] |
Kadota T, Kageyama H, Wakaya F. J. Photopolym. Sci. Technol., 2000, 13: 203.
|
| [19] |
Kadota T, Kageyama H, Wakaya F. J. Photopolym. Sci. Technol., 1999, 12: 375.
|
| [20] |
Yamada A, Hattori S, Saito S. Pro. SPIE, 2010, 76390S/1.
|
| [21] |
Pizarro F, Olivares M, Hertrampf E, Walter T. Arch. Latinoam. Nutr., 1994, 44: 277.
|
| [22] |
Alina S, Beata K, Katarzyna L. Progress on Chemistry and Application of Chitin and Its Derivatives, 2014, 19: 135.
|
| [23] |
Shirota Y. J. Mater. Chem., 2005, 15: 75.
|
| [24] |
Yang D, Seung W C, Ober C K. J. Mater. Chem., 2006, 16: 1693.
|
| [25] |
Anuja D S, Lee J K, Ober C K. Chem. Mater., 2008, 20: 1606.
|
| [26] |
Daniel B, Yang D, Ober C K. Polym. Adv. Technol., 2006, 17: 94.
|
| [27] |
Oizumi H, Kumasaka F, Tanaka Y. Microelectron. Eng., 2006, 83: 1107.
|
| [28] |
Yu J X, Xu N, Wei Q, Wang L Y. J. Mater. Chem. C, 2013, 1: 1160.
|
| [29] |
Liu J, Liu Z P, Wang L Y, Sun H Y. Chin. Sci. Bull., 2014, 59: 1097.
|
| [30] |
Yu J X, Xu N, Liu Z P, Wang L Y. ACS Appl. Mater. Interfaces, 2012, 4: 2591.
|