Bilayer structured nanowire-array and nanotube-cluster TiO2 photoanode for efficient dye-sensitized solar cells

Jun Yu , Chengkai Zhang , Jia Zhuang , Haiyang Qin , Quangui He , Qiumei Liang

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 412 -417.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 412 -417. DOI: 10.1007/s40242-015-5003-8
Article

Bilayer structured nanowire-array and nanotube-cluster TiO2 photoanode for efficient dye-sensitized solar cells

Author information +
History +
PDF

Abstract

Nanowire-array nanotube-cluster bilayer TiO2 films, consisting of nanowire-array at the bottom layer and nanotube-cluster at the top layer were prepared via a two-step hydrothermal method. One step was a growth process and the other was an etching process. Etching process was used to acquire nanowire-array with a small diameter of 20–25 nm of the nanowire and nanotube-cluster. The bilayer nanostructured films were then modified with TiCl4. Villous TiO2 attached to both the inside and outside walls of the nanotube cluster was obtained only by changing the traditional concentration of TiCl4-treatment to 0.2 mol/L. The novel bilayer photoanode finally revealed a higher efficiency of 5.25% when used in dye-sensitized solar cells(DSSCs).

Keywords

Bilayer structure / Etching / Titanium oxide / Photoanode / Dye-sensitized solar cell

Cite this article

Download citation ▾
Jun Yu, Chengkai Zhang, Jia Zhuang, Haiyang Qin, Quangui He, Qiumei Liang. Bilayer structured nanowire-array and nanotube-cluster TiO2 photoanode for efficient dye-sensitized solar cells. Chemical Research in Chinese Universities, 2015, 31(3): 412-417 DOI:10.1007/s40242-015-5003-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

O’Regan B., Grötzel M. Nature, 1997, 353: 737.

[2]

Lan Z., Wu J. H., Lin J. M., Huang M. L. Science China Chemistry, 2012, 55: 1308.

[3]

Pan K., Liu Z. Y., Hu J. Q., Li J., Li Z. H., Li D., Liu Y., Liu M., Li J. H., Wang D. J., Bai Y. B., Li T. J. Chem. Res. Chinese Universities, 2005, 21(3): 360.

[4]

Chung J., Myoung J., Oh J., Lim S. J. Phys. Chem. C, 2010, 114(49): 21360.

[5]

Zheng Y. Z., Tao X., Wang L. X., Xu H., Hou Q., Zhou W. L. Chem. Mater., 2010, 22: 928.

[6]

Dou X., Sabba D., Mathew N., Wong L. H., Lam Y. M., Mhaisalkar S. Chem. Mater., 2011, 23: 3938.

[7]

Hagfeldt A., Boschloo G., Sun L., Boschloo G., Sun L., Kloo L., Pettersson H. Chem. Rev., 2010, 110(11): 6595.

[8]

Feng X. J., Shankar K., Varghese O. K., Paulose M., Latempa T. J., Grimes C. A. Nano Lett., 2008, 8: 3781.

[9]

Zhuge F. W., Qiu J. J., Li X. M., Gao X. D., Gan X. Y., Yu W. D. Adv. Mater., 2011, 23: 1330.

[10]

Yuan J. J., Li H. D., Wang Q. L., Cheng S. H., Zheng X. K., Yu H. J., Zhu X. R., Xie Y. Chem. Res. Chinese Universities, 2014, 30(1): 18.

[11]

Yu M., Long Y. Z., Sun B., Fan Z. Y. Nanoscale, 2012, 4(9): 2783.

[12]

Shao F., Sun J., Gao L., Yang S. W., Luo J. Q. J. Mater. Chem., 2012, 22(14): 6824.

[13]

Koo H. J., Kim Y. J., Lee Y. H., Lee W. I., Kim K., Park N. G. Advanced Materials, 2008, 20(1): 195.

[14]

Zhu K., Neale N. R., Miedaner A., Frank A. J. Nano Lett., 2007, 7(1): 69.

[15]

Ko S. H., Lee D., Kang H. W., Nam K. H., Yeo J. Y., Hong S. J., Grigoropoulos C. P., Sung H. J. Nano Lett., 2011, 11: 666.

[16]

Wang H., Liu Y., Zhong M. Y., Xu H. G., Huang H., Shen H. J. Nanopart. Res., 2011, 13: 1855.

[17]

Zhao J. L., Wang X. H., Chen R. Z., Li L. T. Solid State Communications, 2005, 10: 705.

[18]

Bae C., Yoo H., Kim S., Lee K., Kim J., Sung M. M., Shin H. Chem. Mater., 2008, 20: 756.

[19]

Qiu J. J., Zhuge F. W., Lou K., Li X. M., Gao X. D., Gan X. Y., Yu W. D., Kim H. K., Hwang Y. H. J. Mater. Chem., 2011, 21: 5062.

[20]

Kumar A., Madaria A. R., Zhou C. W. J. Phys. Chem. C, 2010, 114: 7787.

[21]

Yua H., Zhang S. Q., Zhao H. J., Willb G., Liua P. Electrochimica Acta, 2009, 54: 1319.

[22]

Kim J. K., Seo H., Son M. K., Shin I., Cho J. H., Choi S. W., Kim H. J. Phys. Status Solidi. C, 2011, 8: 634.

[23]

Liu B., Aydil E. S. J. Am. Chem. Soc., 2009, 131: 3985.

[24]

Zhou Z. J., Fan J. Q., Wang X., Zhou W. H., Du Z. L., Wu S. X. Appl. Mater. Interfaces, 2011, 3: 4349.

[25]

Liu L., Qian J. H., Li B., Cui Y. M., Zhou X. F., Guo X. F., Ding W. P. Chem. Commun., 2010, 46: 2402.

[26]

Guo W. X., Xu C., Wang X., Wang S., Pan C. F., Lin C. J., Wang Z. L. J. Am. Chem. Soc., 2012, 9: 4437.

[27]

Nair A. S., Zhu P., Babu V. J., Yang S.Y., Seeram R. Phys. Chem., 2011, 13: 21248.

[28]

Joseph D. P., Saravanan M., Muthuraaman B., Renugambal P., Sambasivam S. Nanotechnology, 2008, 19: 485.

[29]

Zhuang J., Qin H. Y., Li L. F. Chinese J. Inorg. Chem., 2013, 5: 1057.

[30]

M. Q., Zheng D. J., Ye M. D., Xiao J., Guo W. X., Lai Y. K., Sun L., Lin C. J., Zuo J. Energy Environ. Sci., 2013, 6: 1615.

[31]

O’Regan B. C., Durrant J. R., Sommeling P. M., Bakker N. J. J. Phys. Chem. C, 2007, 111: 14001.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/