Hydroformylation of 1-octene over nanotubular TiO2-supported amorphous Co-B catalysts

Yukun Shi , Xiaojing Hu , Baolin Zhu , Shoumin Zhang , Weiping Huang

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 851 -857.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 851 -857. DOI: 10.1007/s40242-015-5002-9
Article

Hydroformylation of 1-octene over nanotubular TiO2-supported amorphous Co-B catalysts

Author information +
History +
PDF

Abstract

TiO2 nanotubes supported amorphous Co-B(Co-B/TNTs) catalyst was prepared via impregnationchemical reduction procedure. The catalyst was characterized with transmission electron microscopy(TEM), ammonia temperature-programmed desorption(NH3-TPD), thermogravimetry-differential thermal analysis(TG-DTA), Fourier transform infrared spectroscopy(FTIR) and Raman spectroscopy. The effects of temperature and ratio of CO to H2 on the hydroformylation of 1-octene were studied. At an optimized reaction temperature(150 °C) and volume ratio of CO to H2(2:1), the conversion of 1-octene can reach 97.4% with a selectivity of 23.1% for total aldehydes and n/i-aldehyde molar ratio of 40:60. To obtain higher selectivity for linear aldehydes, Co-B/TNTs modified with triphenylphosphine for the hydroformylation of 1-octene were investigated. When molar ratio of P/Co was 4, the yield of total aldehydes was the highest(31.6%) with a good selectivity for linear product(n/i-aldehyde molar ratio was 70:30). In recycle use, the Co-B/TNTs catalyst modified with triphenylphosphine could be reused five times without reducing the activity and selectivity obviously. For a comparative study, all the Co-B/TNTs to catalyze the hydroformylation of other olefins exhibited high conversion under the optimized conditions.

Keywords

Hydroformylation / TiO2 nanotubes / Amorphous Co-B / 1-Octene

Cite this article

Download citation ▾
Yukun Shi, Xiaojing Hu, Baolin Zhu, Shoumin Zhang, Weiping Huang. Hydroformylation of 1-octene over nanotubular TiO2-supported amorphous Co-B catalysts. Chemical Research in Chinese Universities, 2015, 31(5): 851-857 DOI:10.1007/s40242-015-5002-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Piras I., Jennerjahn R., Jackstell R., Spannenberg A., Franke R., Beller M. Angew. Chem., 2011, 123(1): 294.

[2]

Neves  C. B., Calvete M. J. F., Pinho e Melo T. M. V. D., Pereira M. M. Eur. J. Org. Chem., 2012, 32: 6309.

[3]

Zhang L., Li C., Zheng X. L., Fu H. Y., Chen H., Li R. X. Catal. Lett., 2014, 144(6): 1074.

[4]

Gonsalvi L., Guerriero A., Monflier E., Peruzzini M. Top Curr. Chem., 2013, 342: 1.

[5]

Behr A., Reyer S., Tenhumberg N. Dalton Trans., 2011, 40(44): 11742.

[6]

Zhang D. L., Fu H. Y., Zhao X. Y., Zhao H. W., Chen H., Liu Y. M., Li X. J. Chem. J. Chinese Universities, 2012, 33(8): 1835.

[7]

Dabbawala A. A., Bajaj H. C., Bricout H., Monflier E. Appl. Catal. A: Gen., 2012, 273.

[8]

Cai Y., Li Z. H., Yang Y. Q., Yuan Y. Z. Chem. Res. Chinese Universities, 2002, 18(3): 311.

[9]

Song K. C., Baek J. Y., Bae J. A., Yim J. H., Ko Y. S., Kim D. H., Park Y. K., Jeon J. K. Catal. Today, 2011, 164(1): 561.

[10]

Wu L. P., Fleischer I., Jackstell R., Profir I., Franke R., Beller M. J. Am. Chem. Soc., 2013, 135(38): 14306.

[11]

Krausová Z., Sehnal P., Bondzic B. P., Chercheja S., Eilbracht P., StaráI G., Saman D., Starý I. Eur. J. Org. Chem., 2011, 3849.

[12]

Bungu P. N., Otto S. Dalton Trans., 2011, 40(36): 9238.

[13]

Vu T. V., Kosslick H., Schulz A., Harloff J., Paetzold E., Radnik J., Kragl U., Fuld G., Janiak C., Tuyen N. D. Micropor. Mesopor. Mater., 2013, 177: 135.

[14]

Gniewek A., Trzeciak A. M. Top Catal., 2013, 56: 1239.

[15]

Franke R., Selent D., Borner A. Chem. Rev., 2012, 112(11): 5675.

[16]

Adint T. T., Landis C. R. J. Am. Chem. Soc., 2014, 136(22): 7943.

[17]

Nairoukh Z., Blum J. J. Org. Chem., 2014, 79(6): 2397.

[18]

Li X. M., Ding Y. J., Jiao G. P., Li J. W., Yan L., Zhu H. J. Chem. Res. Chinese Universities, 2009, 25(5): 738.

[19]

Yang Y., Deng C., Yuan Y. J. Catal., 2005, 232(1): 108.

[20]

Riisager A., Erikson K. M., Hjortkjaer J., Fehrmann R. J. Mol. Catal. A: Chem., 2003, 193(1/2): 259.

[21]

Wilkes J. S. Green Chem., 2002, 4(2): 73.

[22]

Makhubela B. C. E., Jardine A., Smith G. S. Green Chem., 2012, 14(2): 338.

[23]

Li X., Li J. H., Li S. J., Fang X., Fang F., Chu X. Y., Wang X. H., Hua J. X. Chem. Res. Chinese Universities, 2013, 29(6): 1032.

[24]

Zheng X. C., Zhang X. L., Wang S. P., Wang X. Y., Wu S. H. J. Nat. Gas Chem., 2007, 16(2): 179.

[25]

Guan R. Q., Chao G. K., Ye C. P., Wang Y. X., Liu Y. M., Li H. H., Zhao Y. J., Tai Y. L. Chem. Res. Chinese Universities, 2014, 30(2): 284.

[26]

Ma L., Peng Q. R., He D. H. Catal. Lett., 2009, 130(1/2): 137.

[27]

Hu X. J., Shi Y. K., Zhang Y. J., Zhu B. L., Zhang S. M., Huang W. P. Catal. Commun., 2015, 59: 45.

[28]

Aphairaj D., Wirunmongkol T., Niyomwas S., Pavasupree S. Ceram. Int., 2014, 40(7): 9241.

[29]

Li H. X., Chen X. F., Wang M. H., Xu Y. P. Appl. Catal. A: Gen., 2002, 225(1/2): 117.

[30]

Ivekovic D., Gajovic A., Ceh M., Pihlar B. Electroanal., 2010, 22(19): 2202.

[31]

Zanella R., Rodríguez-Gonzalez V., Arzola Y., Moreno-Rodriguez A. ACS Catal., 2012, 2(1): 1.

[32]

Gai L. G., Du G. J., Zuo Z. Y., Wang Y. M., Liu D., Liu H. J. Phys. Chem. C, 2009, 113(18): 7610.

[33]

Patel N., Fernandes R., Guella G., Kale A., Miotello A., Patton B., Zanchetta C. J. Phys. Chem. C, 2008, 112(17): 6968.

[34]

Birbeck J. M., Haynes A., Adams H., Damoense L., Otto S. ACS Catal., 2012, 2(12): 2512.

[35]

Li B. T., Li X. H., Asami K. J., Fujimoto K. R. Energ. Fuel, 2003, 17(4): 810.

[36]

Zhou G. B., Pei Y., Jiang Z., Fan K. N., Qiao M. H., Sun B., Zong B. N. J. Catal., 2014, 311: 393.

[37]

Wu D., Zhang J. W., Wang Y. H., Jiang J. Y., Jin Z. L. Appl. Organometal. Chem., 2012, 26(12): 718.

[38]

Wender I., Sternberg H. W., Orchin M. J. Am. Chem. Soc., 1953, 75(12): 3041.

[39]

Heck R. F., Breslow D. S. J. Am. Chem. Soc., 1961, 83(19): 4023.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/