DNA induced FePt bimetallic nanoparticles on reduced graphene oxide for electrochemical determination of dopamine

Wenyan Zhang , Yang Liu

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 406 -411.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 406 -411. DOI: 10.1007/s40242-015-4515-6
Article

DNA induced FePt bimetallic nanoparticles on reduced graphene oxide for electrochemical determination of dopamine

Author information +
History +
PDF

Abstract

FePt bimetallic nanoparticles were formed on reduced graphene oxide(rGO) with the help of double-stranded DNA(dsDNA) via a simple and universal route to obtain a FePt/DNA-rGO composite. The FePt nanoparticles with an average size of about 5 nm were well dispersed on rGO. FePt/DNA-rGO modified glassy carbon electrode(GCE) exhibited excellent electrocatalytic activity for the oxidation of dopamine(DA) with a detection limit of 100 nmol/L(S/N = 3). In addition, the FePt/DNA-rGO based electrochemical sensor showed an excellent selectivity for DA in the presence of ascorbic acid(AA), uric acid(UA) and other interference reagents. The as-prepared electrochemical biosensor shows great promise in the application of clinical diagnostics.

Keywords

Reduced graphene oxide / FePt bimetal nanoparticle / DNA / Electroanalysis / Dopamine

Cite this article

Download citation ▾
Wenyan Zhang, Yang Liu. DNA induced FePt bimetallic nanoparticles on reduced graphene oxide for electrochemical determination of dopamine. Chemical Research in Chinese Universities, 2015, 31(3): 406-411 DOI:10.1007/s40242-015-4515-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Geim A. K., Novoselov K. S. Nat. Mater., 2007, 6: 183.

[2]

Fowler J. D., Allen M. J., Tung V. C., Yang Y., Kaner R. B., Weiller B. H. ACS Nano, 2009, 3: 301.

[3]

Stoller M. D., Park S., Zhu Y., An J., Ruoff R. S. Nano Lett., 2008, 8: 3498.

[4]

Liu Y., Dong X., Chen P. Chem. Soc. Rev., 2012, 41: 2283.

[5]

Kuila T., Bose S., Khanra P., Mishra A. K., Kim N. H., Lee J. H. Biosens. Bioelectron., 2011, 26: 4637.

[6]

Feng H., Cheng R., Zhao X., Duan X., Li J. Nat. Commun., 2013, 4: 1539.

[7]

Wang Y., Li Y., Tang L., Lu J., Li J. Electrochem. Commun., 2009, 11: 889.

[8]

Razmi H., Azadbakht A. Electrochim. Acta, 2005, 50: 2193.

[9]

Zhao Y. F., Gao Y. Q., Zhan D. P., Liu H., Zhao Q., Kou Y., Shao Y. H., Li M. X., Zhuang Q. K., Zhu Z. W. Talanta, 2005, 66: 51.

[10]

Niu X., Yang W., Guo H., Ren J., Gao J. Biosens. Bioelectron., 2013, 41: 225.

[11]

Zhao J., Chen G., Zhu L., Li G. Electrochem. Commun., 2011, 13: 31.

[12]

Zhu X., Sun L., Chen Y., Ye Z., Shen Z., Li G. Biosens. Bioelectron., 2013, 47: 32.

[13]

Li X., Miao P., Ning L., Gao T., Ye Z., Li G. Curr. Nanosci., 2014, 10: 801.

[14]

Li S. J., He J. Z., Zhang M. J., Zhang R. X., X. L., Li S. H., Pang H. Electrochim. Acta, 2013, 102: 58.

[15]

Mallesha M., Manjunatha R., Nethravathi C., Suresh G. S., Rajamathi M., Melo J. S., Venkatesha T. V. Bioelectrochem., 2011, 81: 104.

[16]

Wang X., Wu M., Tang W., Zhu Y., Wang L., Wang Q., He P., Fang Y. J. Electroanal. Chem., 2013, 695: 10.

[17]

Sun C. L., Lee H. H., Yang J. M., Wu C. C. Biosens. Bioelectron., 2011, 26: 3450.

[18]

Pasricha R., Gupta S., Srivastava A. K. Small, 2009, 5: 2253.

[19]

Cao A., Liu Z., Chu S., Wu M., Ye Z., Cai Z., Chang Y., Wang S., Gong Q., Liu Y. Adv. Mater., 2010, 22: 103.

[20]

Liu X. W., Mao J. J., Liu P. D., Wei X. W. Carbon, 2011, 49: 477.

[21]

Liu J., Fu S., Yuan B., Li Y., Deng Z. J. Am. Chem. Soc., 2010, 132: 7279.

[22]

Xu W. P., Zhang L. C., Li J. P., Lu Y., Li H. H., Ma Y. N., Wang W. D., Yu S. H. J. Mater. Chem., 2011, 21: 4593.

[23]

Wang H., Shi Y., Li Z., Zhang W., Yao S. Chem. Res. Chinese Universities, 2014, 30(4): 650.

[24]

Li Z., Shi X., Ge X., Wei J., Yang C., Fang B., Xie H., An X. Chem. Res. Chinese Universities, 2012, 28(3): 520.

[25]

Ocsoy I., Gulbakan B., Chen T., Zhu G., Chen Z., Sari M. M., Peng L., Xiong X., Fang X., Tan W. Adv. Mater., 2013, 25: 2319.

[26]

Tiwari J. N., Nath K., Kumar S., Tiwari R. N., Kemp K. C., Le N. H., Youn D. H., Lee J. S., Kim K. S. Nat. Commun., 2013, 4: 2221.

[27]

Tang L., Wang Y., Liu Y., Li J. ACS Nano, 2011, 5: 3817.

[28]

Zhang Q., Qiao Y., Hao F., Zhang L., Wu S., Li Y., Li J., Song X. Chem. Eur. J., 2010, 16: 8133.

[29]

Kim Y. R., Bong S., Kang Y. J., Yang Y., Mahajan R. K., Kim J. S., Kim H. Biosens. Bioelectron., 2010, 25: 2366.

[30]

Yeh W. L., Kuo Y. R., Cheng S. H. Electrochem. Commun., 2008, 10: 66.

[31]

Jia Z., Liu J., Shen Y. Electrochem. Commun., 2007, 9: 2739.

[32]

Jia N., Wang Z., Yang G., Shen H., Zhu L. Electrochem. Commun., 2007, 9: 233.

[33]

Wang Y., Zhang S., Li Z., Wang J., Li J., Lin Y. J. Mater. Chem., 2011, 21: 5319.

[34]

Zhang Q., Wu S., Zhang L., Lu J., Verproot F., Liu Y., Xing Z., Li J., Song X. Biosens. Bioelectron., 2011, 26: 2632.

[35]

Gu H., Xu Y., Peng W., Li G., Chen H. Microchim. Acta, 2004, 146: 223.

[36]

Fan X., Peng W., Li Y., Li X., Wang S., Zhang G., Zhang F. Adv. Mater., 2008, 20: 4490.

[37]

Si Y., Samulski E. T. Chem. Mat., 2008, 20: 6792.

[38]

Wang J. Phy. Rev. B, 2008, 78: 245304.

[39]

Xu T. Q., Zhang Q. L., Zheng J. N., Z. Y., Wei J., Wang A. J., Feng J. J. Electrochim. Acta, 2014, 115: 109.

[40]

Sheng Z., Zheng X., Xu J., Bao W., Wang F., Xia X. Biosens. Bioelectron., 2012, 34: 125.

[41]

Wang C., Du J., Wang H., Zou C., Jiang F., Yang P., Du Y. Sensor Actuat B, 2014, 204: 302.

[42]

Yu B., Kuang D., Liu S., Liu C., Zhang T. Sensor Actuat B, 2014, 205: 120.

[43]

Han H. S., Heejin S., Kang D. H., Ahmed M. S., You J. M., Jeon S. Sensor. Actuat B, 2014, 204: 289.

[44]

Liu X., Xie L., Li H. J. Electroanal. Chem., 2012, 682: 158.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/