Chelating properties of salicylhydroxamic acid-functionalized polystyrene resins and its application to efficient removal of heavy metal ions from aqueous solutions

Ruixin Wang , Caiping Lei , Hongjing Wang , Xiaohui Shi

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 471 -476.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 471 -476. DOI: 10.1007/s40242-015-4476-9
Article

Chelating properties of salicylhydroxamic acid-functionalized polystyrene resins and its application to efficient removal of heavy metal ions from aqueous solutions

Author information +
History +
PDF

Abstract

Salicylhydroxamic acid(SHA) was covalently bound onto crosslinked polystyrene spheres(CPSs) via the Friedel-Crafts alkylation reaction between chloromethylated CPSs and SHA in the presence of SnCl4 as the Lewis acid catalyst. The resulted SHA-CPSs possessed very strong chelating ability for heavy metal ions. In particular, the saturated adsorption amount of SHA-CPSs for Cu2+ ions could reach as high as 34.2 mg/g at 318 K. The chelating capability of SHA-CPSs towards heavy metal ions was pH and temperature dependent. SHA-CPSs also showed selective metal coordination with the chelating capacity decreasing in the order of Cu2+ >Zn2+>>Pb2+. The adsorption isotherms conformed well to the Langmuir model, and the adsorption process was found to be entropy-driven and endothermic. Besides, SHA-CPSs possessed the excellent reusability.

Keywords

Salicylhydroxamic acid / Crosslinked polystyrene sphere / Chelation adsorption / Entropy driving / Heavy metal ion

Cite this article

Download citation ▾
Ruixin Wang, Caiping Lei, Hongjing Wang, Xiaohui Shi. Chelating properties of salicylhydroxamic acid-functionalized polystyrene resins and its application to efficient removal of heavy metal ions from aqueous solutions. Chemical Research in Chinese Universities, 2015, 31(3): 471-476 DOI:10.1007/s40242-015-4476-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dong J. B., Wu J. B., Yang J., Song W., Dai X. J., Ye Z. D., Gong B. L. Chem. J. Chinese Universities, 2013, 34(3): 714.

[2]

Chen Y. N., Gao L., He M. F., Wei Y. M. Chem. J. Chinese Universities, 2014, 35(7): 1596.

[3]

Zhang Q., Xia K., Liu L., Liu Y. C., Zhang C., Liu X., Xu H., Chen S. J., Chen J. D. Chem. J. Chinese Universities, 2013, 34(11): 2667.

[4]

Cao C. Y., Qu J., Yan W. S., Zhu J. F., Wu Z. Y., Song W. G. Langmuir, 2012, 28(9): 4573.

[5]

Singh S., Barick K. C., Bahadur D. J. Mater. Chem. A, 2013, 1: 3325.

[6]

Yang L., Li Y., Jin X., Ye Z., Ma X., Wang L., Liu Y. Chem. Eng. J., 2011, 168(1): 115.

[7]

Xiong C. H., Zheng Y. Q., Feng Y. J., Yao C. P., Ma C. A., Zheng X. M., Jiang J. X. J. Mater. Chem., A, 2014, 2: 5379.

[8]

Hasanzadeh R., Moghadam P. N., Samadi N. Polym. Adv. Technol., 2013, 24(1): 34.

[9]

Xu J., Franklin S. J., Whisenhun D. W., Raymond K. N. J. Am. Chem. Soc., 1995, 117: 7245.

[10]

Zeng W., Zeng G. Y., Qin S. Y. Chin. J. Org. Chem., 2003, 23: 1213.

[11]

Jiao J., Fang H., Wang X. J., Guan P., Yuan Y. M., Xu W. F. Eur. J. Med. Chem., 2009, 44: 4470.

[12]

Li H. B., Qin C., Liang W., Wang L. P., Hao M. A., Jin B., Liang X. L., Qin S. Y. J. Mol. Catal., 2009, 23(1): 62.

[13]

De Costa M. D. P., Jayasinghe W. A. P. A. J. Photochem. Photobiol., 2004, 162: 591.

[14]

Qiu X. Y., Gao Y. D. Nonferrous Metals, 2005, 6: 37.

[15]

Yan B., Zhou C. C., Zhao X. R., Ren X. C. Light Metals, 2011, 4: 7.

[16]

Jia L. P., Che X. K., Zheng Q., Zhang L. Metal Mine, 2011, 7: 106.

[17]

Liu W. G., Wang B. Y., Dai S. J., Ma A. X., Wei D. Z. Non-ferrous Mining and Metallurgy, 2006, 22(4): 25.

[18]

Lue C. L., Gao B. J., Liu Q., Qi C. S. Colloid Polym. Sci., 2008, 286: 553.

[19]

Lagergren S., Kung L. Svenska Vetenskapsakademien. Handlingar, 1898, 24: 1.

[20]

Huang J. H., Jin X. Y., Mao J. L., Yuan B., Deng R. J., Deng S. G. J. Hazard. Mater., 2012, 217/218: 406.

[21]

Wang H. J., Kang J., Liu H. J., Qu J. H. J. Environ. Sci., 2009, 21: 1473.

[22]

Gong H. X., Hu P. Z., Jiang M. Y., Huang X. L., Shen T., Ge W. W., Pan S. D., Shen H. Y. Acta Chimica Sinica, 2011, 69(22): 2673.

[23]

Saeed K., Haider S., Oh T. J., Park S. Y. J. Membr. Sci., 2008, 322: 400.

[24]

Gao B. J., Gao Y. C., Li Y. B. Chem. Eng. J., 2010, 158: 542.

[25]

Cestari A. R., Vieira E. F. S., Mattos C. R. S. J. Chem. Thermodyn., 2006, 38: 1092.

[26]

Anjos F. S. C., Vieira E. F. S., Cestaril A. R. J. Colloid Interface Sci., 2002, 253(2): 243.

[27]

Chen H., Wang A. Q. J. Hazard. Mater., 2009, 165: 223.

AI Summary AI Mindmap
PDF

174

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/