Influence of Cr on the electronic properties of passive film on B30 alloy in NaOH solution

Yongbin Shang , Shuqin Xiao , Xiaolin Qiu , Yaming Wei

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (4) : 603 -610.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (4) : 603 -610. DOI: 10.1007/s40242-015-4469-8
Article

Influence of Cr on the electronic properties of passive film on B30 alloy in NaOH solution

Author information +
History +
PDF

Abstract

The influence of Cr on the electronic properties of the passive film on B30 alloy in NaOH solution was studied via electrochemical impedance spectra(EIS), potentiodynamic curve and Mott-Schottky plot. The Cr doped in the passive film on B30 alloy was detected by X-ray photoelectron spectroscopy(XPS). XPS results show that Cr2O3 appeared on the passive film, which implied the enhanced anti-corrosion of B30 alloy. The passive film showed a p-type semi-conductive character. The acceptor density(NA) was in an order of magnitude of 1022 cm−3, and N A decreased with the increment of Cr. EIS results show that the film resistance(R f) increased with increasing the amount of Cr. The diffusion coefficient(D 0) was calculated to be in a range of 10−16−10−17 cm−2/s on the basement of point defect model(PDM).

Keywords

Electrochemcal impedance spectrum / X-Ray photoelectron spectroscopy / Passive film

Cite this article

Download citation ▾
Yongbin Shang, Shuqin Xiao, Xiaolin Qiu, Yaming Wei. Influence of Cr on the electronic properties of passive film on B30 alloy in NaOH solution. Chemical Research in Chinese Universities, 2015, 31(4): 603-610 DOI:10.1007/s40242-015-4469-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kammlott G. W., Franey J. P., Gradel T. E. J. Electrochem. Soc, 1992, 131: 505.

[2]

Wojtas H., Virtanen S., Bohni H. Corro. Sci, 1995, 37: 793.

[3]

Sanderson M. D., Scully J. C. Corro. Sci, 1970, 10: 165.

[4]

Benedetti A. V., Sumodjo P. T. A., Nobe K., Caqbot P. L., Proud W. G. Electrochim. Acta, 1995, 40: 2657.

[5]

Rosatto S. S., Cabot P. L., Sumodjo P. T. A., Benedetti A. V. Electrochim. Acta, 2001, 46: 1043.

[6]

Manfeld F., Liu G., Xiao H., Tsai C. H., Little B. J. Corro. Sci, 1994, 36: 2063.

[7]

Druska P., Strehblow H. H. Corro. Sci, 1996, 38: 1369.

[8]

Milosev I., Metikos-Hukovic M. Electrochim. Acta, 1997, 42: 1537.

[9]

Milosev I., Metikos-Hukovic M. Corro. Sci, 1992, 48: 185.

[10]

De P. K., Bose A. Corro, 1993, 49: 135.

[11]

Cristiani P., Perboni G., Debenedetti A. Electrochim. Acta, 2008, 54: 100.

[12]

Yuan S. J., Pehkonen S. O. Corro. Sci, 2007, 49: 1276.

[13]

Schrader M. E. Appl. Sur. Sci, 1982, 10: 431.

[14]

Hurtado M. R. F., Sumodio P. T. A., Benedetti A. V. Electrochim. Acta, 2003, 48: 2791.

[15]

Swartzendnruber L. J., Bennett L. H. Scripta Metallurgica, 1968, 2: 93.

[16]

Popplewell J. M., Hart R. J., Ford J. A. Corro. Sci, 1973, 13: 295.

[17]

Wang Y. Z., Beccaria A. M., Poggi G. Corro. Sci, 1994, 36: 1277.

[18]

Druska P., Strehblow H. H., Golledge S. Corro. Sci, 1996, 38: 835.

[19]

Boudin S., Vignes J. L., Orang G. L., Da Cunha Belo M., Blondiaux G., Mikhailov S. M., Jacobs J. P., Brongersma H. H. Surf. Interface Anal, 1994, 22: 462.

[20]

Jabs T., Borthen P., Strehblow H. H. J. Electrochem. Soc, 1997, 144: 1231.

[21]

Lorang G., Jallerat N., Vu Quang K., Langeron J. P. Surf. Interface Anal, 1990, 16: 325.

[22]

Marcus P., Grimal J. M. Corro. Sci, 1992, 33: 805.

[23]

Haupt S., Strehblow H. H. Corro. Sci, 1995, 37: 37.

[24]

Wu B. J., Liu X. Q., Xiao P., Wang S. G. Chem. Res. Chinese Universities, 2008, 24(24): 615.

[25]

Nakaoka N., Ueyama J., Ogura K. J. Electroanal. Chem, 2004, 571: 93.

[26]

Martini E. M. A., Muller I. L. Corro. Sci, 2000, 42: 443.

[27]

Wallinder D., Pan J., Lergraf C., Delblane-Bauer A. Corro. Sci, 1999, 41: 275.

[28]

Juttner K. Electrochim. Acta, 1990, 35: 1501.

[29]

Alves V. A., Brett Christopher M. A. Electrochim. Acta, 2002, 47: 2081.

[30]

Asami K., Hashimoto K., Shimodaira S. Corro. Sci, 1978, 18: 551.

[31]

Schmuki P. J. Solid State Electrochem, 2002, 6: 145.

[32]

Lorang G., Da Cunha Belo M., Simoes A. M. P., Ferreira M. G. S. J. Electrochem. Soc, 1994, 141: 3347.

[33]

Atkins P. W. Physical Chemistry, 1994, Oxford: Oxford University Press.

[34]

Morrison S. R. Electrochemistry at Semiconductor and Oxidized Electrodes, 1980, New York: Plenum Press.

[35]

Hakiki N. E., Da Cunha Belo M. J. Electrochem. Soc, 1996, 143: 3088.

[36]

Nogami G. J. Electrochem. Soc, 1982, 129: 2219.

[37]

Harrington S. P., Devine T. M. J. Electrochem. Soc, 2008, 155: 381.

[38]

Di Quarto F., Di Paola A., Sunseri C. J. Electrochem. Soc, 1980, 127: 1016.

[39]

Maximovitch S. Electrochim. Acta, 1996, 41: 2767.

[40]

Macdonald D. D. J. Electrochem. Soc, 1992, 139: 3434.

[41]

Macdonald D. D., Biaggio S. R., Song H. K. J. Electrochem. Soc, 1992, 139: 170.

[42]

Macdonald D. D., Macdonald M. U. J. Electrochem. Soc, 1990, 137: 2395.

[43]

Bojinov M. Electrochim. Acta, 1997, 42: 3489.

[44]

Baruffaldi C., Casellato U., Cattarin S., Musiani M., Tribollet B., Vercelli B. Electrochim. Acta, 2002, 47: 2989.

[45]

Azumi K., Ohtsuka T., Sato N. J. Electrochem. Soc, 1987, 134: 1352.

[46]

Segal R. L., Smart R., Tumer P. S. Surface and New Surface Chemistry of Oxide Materials, Elsevier, Amsterdam, 1988.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/