Transport properties of alkali fluoride high temperature ionic liquids and application of theories of viscous flow

Anamaria Popescu , Virgil Constantin

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 858 -864.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 858 -864. DOI: 10.1007/s40242-015-4467-x
Article

Transport properties of alkali fluoride high temperature ionic liquids and application of theories of viscous flow

Author information +
History +
PDF

Abstract

The transport properties of several alkali fluoride high temperature ionic liquids(LiF, NaF, KF, RbF and CsF) were studied in a range of 980―1400 K and the temperature dependences of the viscosity and density were interpreted, in agreement with the classical equations characterizing the viscous flow(Arrhenius, Batchinski, Eyring and Frenkel). The experimental results reveal the validity of these equations even at high temperatures, suggesting that no significant structural changes of alkali fluorides occurred in the studied temperature range. Our results clearly demonstrate that the mentioned thermo-physical properties can be used as powerful tools in the further investigations of the ionic interactions governing the alkali fluoride molten salts.

Keywords

Ionic liquid / Alkali fluoride / Viscosity / Temperature dependence / Correlation / Fluidity

Cite this article

Download citation ▾
Anamaria Popescu, Virgil Constantin. Transport properties of alkali fluoride high temperature ionic liquids and application of theories of viscous flow. Chemical Research in Chinese Universities, 2015, 31(5): 858-864 DOI:10.1007/s40242-015-4467-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brockner W., Tørklep K., Øye H. A. Ber. Bunsenges. Phys. Chem., 1979, 83: 12.

[2]

Ejima T., Sato Y., Yaegashi S., Kijima T., Takeuchi E., Tamai K. J. Japan Inst. Metals, 1987, 51(4): 328.

[3]

Popescu A. M. Rev. Roum. Chim., 1999, 44: 765.

[4]

Zuca St. Rev. Roum. Chim., 1970, 15: 1277.

[5]

Eds.: Bockris J. O’M., White J. L., Mackenzie J. D., Physicochemical Measurements at High Temperatures, Butterworths, London, 1959

[6]

Murgulescu I. G., Zuca St. Z. Phys. Chem.(Leipzig), 1961, 218(5/6): 379.

[7]

Zuca S.t., Borcan R. Rev. Roum. Chim., 1984, 29(3): 233.

[8]

Janz G. J. J. Phys. Chem. Ref. Data, 1988, 17(2): 1.

[9]

Janz G. J., Dampier F. W., Lakshminarayan G. R., Lorenz P. K., Tomkins R. P. T. Molten Salts: Vol. 1, Electrical Conductance, Density, and Viscosity Data, 1968, 15: 1.

[10]

Janz G. J., Gardner G. L., Krebs U., Tomkins R. P. T. J. Phys. Chem. Ref. Data, 1974, 3(1): 1.

[11]

Malakhov A. N., Pankratov A. L., Eds.: Prigogine I., Rice S.A., John Wiley & Sons Inc., Evolution Times of Probability Distributions and Averages-exact Solutions of the Kramers’ Problem in Advances in Chemical Physics, Vol. 121, New York, 2002, 357

[12]

Batchinski A. J. Z. Phys. Chem., 1913, 84: 643.

[13]

Silverman D., Roseveare W. E. J. Am. Chem. Soc., 1932, 54(11): 4460.

[14]

Glasstone S., Laidler K. J., Eyring H. Theory of Rate Process, 1941, New York: McGraw-Hill.

[15]

Eds.: Stull D.R., Prophet H., JANAF Thermochemical Tables, Nat. Stand. Ref. Data Ser., NSRDS-NBS 37, Washington D.C., 1971

[16]

Malyshev V., Gab A., Popescu A. M., Constantin V. Chem. Res. Chinese Universities, 2013, 29(4): 771.

[17]

Li Y., Lu J., Xu J. Q., Cui X. B., Sun Y. H., Li K. C., Pan L. Y., Bie H. Y. Chem. Res. Chinese Universities, 2004, 20(6): 681.

[18]

Du F., Bie X. F., Bian X. F., Hu F., Chen G., Wang C. Z., Wei Y. J. Chem. Res. Chinese Universites, 2013, 29(2): 210.

[19]

Frenkel J. Kinetic Theory of Liquids, 1946, Oxford: Clarendon Press, 441.

[20]

Murgulescu I. G., Zuca St. Z. Phys. Chem.(Leipzig), 1963, 222(5/6): 300.

[21]

Murgulescu I. G., Zuca St. Rev. Roum. Chem., 1965, 10(2): 129.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/