Structure and dynamics of confined polymer melts from attractive interaction to repulsive interaction between polymer and smooth wall

Sijia Li , Wanxi Zhang , Weiguo Yao , Tongfei Shi

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 477 -483.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 477 -483. DOI: 10.1007/s40242-015-4455-1
Article

Structure and dynamics of confined polymer melts from attractive interaction to repulsive interaction between polymer and smooth wall

Author information +
History +
PDF

Abstract

We studied the static and dynamic properties of unentangled polymer chains which have a variable strength of interaction with the confining smooth walls by means of the lattice Monte Carlo simulation based on the bond-fluctuation model, that is, investigated the wall-polymer interactions which systematically vary from attraction to repulsion. A critical value of attractive potential(εwc) is found to be–0.6k B T, and only below it can the adsorption layer of monomers be formed near the wall. At the critical point of attraction εwc, attractive interaction counterbalances the wall-polymer excluded volume effect, which minimizes the confinement effects on both chain dimension and mobility. Influences on both chain dimension and mobility increase with the increasing of either attraction or repulsion imposed by the walls. Despite of the nature and strength of the wall-polymer interaction, with the decrease of film thickness, configurations more parallelly aligned and flattened are adopted by confined chains, and a systematic trend of deceleration is found. Variations of chain dynamics with both film thickness and wall-polymer interaction can be well explained by the corresponding changes in the confinement of the nearest-neighboring particles that surround the chains. Besides, the thickness of the interfacial layer inside polymer films, where chains adopt a flattened “pancake” shape, is about two times the bulk radius of gyration and independent of the wall-polymer interaction.

Keywords

Confinement effect / Wall-polymer interaction / Critical point of attraction / Lattice Monte Carlo simulation

Cite this article

Download citation ▾
Sijia Li, Wanxi Zhang, Weiguo Yao, Tongfei Shi. Structure and dynamics of confined polymer melts from attractive interaction to repulsive interaction between polymer and smooth wall. Chemical Research in Chinese Universities, 2015, 31(3): 477-483 DOI:10.1007/s40242-015-4455-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mai Y., Yu Z. Polymer Nanocomposites, 2006, Boca Raton: CRC Press, 337.

[2]

Myers D. Surfaces, Interfaces, and Colloids: Principles and Applications, 1999, New York: Wiley-VCH, 415.

[3]

Long Y., Palmer J. C., Coasne B., Sliwinska-Bartkowiak M., Jackson G., Mueller E. A., Gubbins K. E. J. Chem. Phys., 2013, 139: 144701.

[4]

Hoda N., Kumar S. Langmuir, 2007, 23: 11747.

[5]

Freed K. F., Dudowicz J., Stukalin E. B., Douglas J. F. J. Chem. Phys., 2010, 133: 094901.

[6]

Erber M., Tress M., Mapesa E. U., Serghei A., Eichhorn K. J., Voit B., Kremer F. Macromolecules, 2010, 43: 7729.

[7]

Desai T., Keblinski P., Kumar S. K. J. Chem. Phys., 2005, 122: 134910.

[8]

Karatrantos A., Composto R. J., Winey K. I., Clarke N. Macromolecules, 2011, 44: 9830.

[9]

Karatrantos A., Composto R. J., Winey K. I., Kroeger M., Clarke N. Macromolecules, 2012, 45: 7274.

[10]

Sikorski A., Zukowska I. Colloids Surf., 2008, 321: 244.

[11]

Sevink G. J. A., Zvelindovsky A. V. Macromolecules, 2009, 42: 8500.

[12]

Egorov S. A., Paturej J., Likos C. N., Milchev A. Macromolecules, 2013, 46: 3648.

[13]

Erber M., Khalyavina A., Eichhorn K. J., Voit B. I. Polymer, 2010, 51: 129.

[14]

Higuchi Y., Yoshikawa K., Iwaki T. Phys. Rev. E, 2011, 84: 021924.

[15]

Hsu H. P., Binder K. Macromolecules, 2013, 46: 8017.

[16]

Aoyagi T., Takimoto J., Doi M. J. Chem. Phys., 2001, 115: 552.

[17]

Batistakis C., Lyulin A. V., Michels M. A. J. Macromolecules, 2012, 45: 7282.

[18]

Batistakis C., Michels M. A. J., Lyulin A. V. Macromolecules, 2014, 47: 4690.

[19]

Lin C. C., Gam S., Meth J. S., Clarke N., Winey K. I., Composto R. J. Macromolecules, 2013, 46: 4502.

[20]

van Zanten J. H., Wallace W. E., Wu W. L. Phys. Rev. E, 1996, 53: R2053.

[21]

Forrest J. A., Dalnoki-Veress K. Adv. Colloid Interface Sci., 2001, 94: 167.

[22]

Roth C. B., Dutcher J. R. J. Electroanal. Chem., 2005, 584: 13.

[23]

Alcoutlabi M., McKenna G. B. J. Phys. Condens. Matter, 2005, 17: R461.

[24]

Keddie J. L., Jones R. A. L., Cory R. A. Faraday Discuss., 1994, 98: 219.

[25]

Reiter G. Macromolecules, 1994, 27: 3046.

[26]

Forrest J. A., Dalnoki-Veress K., Stevens J. R., Dutcher J. R. Phys. Rev. Lett., 1996, 77: 2002.

[27]

Bitsanis I., Hadziioannou G. J. Chem. Phys., 1990, 92: 3827.

[28]

Muller M. J. Chem. Phys., 2002, 116: 9930.

[29]

Mischler C., Baschnagel J., Dasgupta S., Binder K. Polymer, 2002, 43: 467.

[30]

Li Y. J., Wei D. S., Han C. C., Liao Q. J. Chem. Phys., 2007, 126: 204907.

[31]

Shaffer J. S. J. Chem. Phys., 1994, 101: 4205.

[32]

Shaffer J. S. J. Chem. Phys., 1995, 103: 761.

[33]

Yang Y. B., Sun Z. Y., An L. J. Acta Polym. Sin., 2011, 5: 554.

[34]

Shaffer J. S. Macromolecules, 1996, 29: 1010.

[35]

Mischler C., Baschnagel J., Binder K. Adv. Colloid Interface Sci., 2001, 94: 197.

[36]

Paul W., Binder K., Heermann D. W., Kremer K. J. Chem. Phys., 1991, 95: 7726.

[37]

Yang Y. B., Sun Z. Y., Fu C. L., An L. J., Wang Z. G. J. Chem. Phys., 2010, 133: 064901.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/