Rational fabrication of size tunable SnO2 hollow microspheres

Zhiqiang Huang , Jia Guo , Xiaoling Wang , Haiyan Gao , Jianguo Yu , Yongnan Zhao , Guodong Li

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 719 -723.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 719 -723. DOI: 10.1007/s40242-015-4452-4
Article

Rational fabrication of size tunable SnO2 hollow microspheres

Author information +
History +
PDF

Abstract

A designed solution route was developed to fabricate size tunable SnO2 hollow microspheres based on the sol-gel theory. The hydrolysis of SnSO4 released protons to form SnO2 particulates and induced the decrease of pH value. To minimize the high surface energy, the SnO2 particulates tended to assemble into large particles, the size of which was affected by the electrolyte concentration or pH value. Elevating SnSO4 content aroused the decrease of the pH value that directed to the shrinkage of the aggregated particle size of SnO2. Size tunable SnO2 hollow microspheres were then rationally fabricated under solvothermal conditions via Ostwald ripening by simply adjusting the SnSO4 concentration. The in situ pH decrease directed to the shrinkage of the particle size from 270 nm to 112 nm. The formation mechanism was confirmed and rationally elucidated by the time dependant morphology evolution. Charge-discharge tests revealed that the reduced particle size aroused an improved lithium ion battery performance.

Keywords

Hollow microsphere / Solvothermal synthesis / Nanocrystalline material / Tin oxide

Cite this article

Download citation ▾
Zhiqiang Huang, Jia Guo, Xiaoling Wang, Haiyan Gao, Jianguo Yu, Yongnan Zhao, Guodong Li. Rational fabrication of size tunable SnO2 hollow microspheres. Chemical Research in Chinese Universities, 2015, 31(5): 719-723 DOI:10.1007/s40242-015-4452-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lou X. W., Archer L. A., Yang Z. C. Adv. Mater., 2008, 20: 3987.

[2]

Zhang Q., Wang W. S., Goebl J., Yin Y. D. Nano Today, 2009, 4: 494.

[3]

Wang W. S., Zhen L., Xu C. Y., Li Y., Shao W. Z. J. Phys. Chem. C, 2008, 112: 19390.

[4]

Lou X. W., Yuan C., Rhoades E., Zhang Q., Archer A. Adv. Funct. Mater., 2006, 16: 1679.

[5]

Guan Y., Wang C., Wang B., Ma J., Xu X. M., Sun Y. F., Liu F. M., Liang X. S., Gao Y., Lu G. Y. Chem. Res. Chinese Universities, 2013, 29(5): 837.

[6]

Li J., Zeng H. C. J. Am. Chem. Soc., 2007, 129: 15839.

[7]

Yu H. G., Yu J. G. L. S.W., Mann S. Chem. Mater., 2007, 19: 4327.

[8]

Yin Y. D., Erdonmez C. K., Cabot A., Hughes S., Alivisatos A. P. Adv. Funct. Mater., 2006, 16: 1389.

[9]

Chen X. Y., Qiao M. H., Xie S. H., Fan K., Zhou W. Z., He H. Y. J. Am. Chem. Soc., 2007, 129: 13305.

[10]

Xu H. L., Wang W. Z., Zhou L. Cryst. Growth Des., 2008, 8: 3486.

[11]

Ye T. N., Dong Z. H., Zhao Y. N., Yu J. G., Wang F. Q., Guo S. K., Zou Y. C. Langmuir, 2011, 27: 8878.

[12]

Ye T. N., Dong Z. H., Zhao Y. N., Yu J. G., Wang F. Q., Guo S. K., Zou Y. C. Cryt. Eng. Comm., 2011, 13: 3842.

[13]

Ye T. N., Dong Z. H., Zhao Y. N., Yu J. G., Wang F. Q., Zhang L. L., Zou Y. C. Dalton Trans, 2011, 40: 2601.

[14]

Dong Z. H., Ye T. N., Zhao Y. N., Yu J. G., Wang F. Q., Zhang L. L., Wang X. B., Guo S. K. J. Mater. Chem., 2011, 21: 5978.

[15]

Li Y. L., Zhao J. Z., Zhao Y., Hao X. L., Hou Z. Y. Chem. Res. Chinese Universities, 2013, 29(6): 1040.

[16]

Wang H. K., Rogach A. L. Chem. Mater., 2014, 26: 123.

[17]

Wang Z. Y., Wang Z. C., Madhavi S., Lou X. W. Chem. Eur. J., 2012, 18: 7561.

[18]

Chen J. S., Lou X. W. Small, 2013, 9: 1877.

[19]

Baes C. F., Mesmer R. E. The Hydrolysis of Cations, 1976, New York: Wiley-VCH.

[20]

Brinker C. J., Scherer G. W. Sol-Gel Science: the Physics and Chemistry of Sol-gel Processing, 1990, San Diego: Academic Press.

[21]

Liu M. X., Ma X. M., Gan L. H., Xu Z. J., Zhu D. Z., Chen L. W. J. Mater. Chem. A, 2014, 2: 17107.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/