Rapid microwave-assisted hydrothermal synthesis of SrWO4:Eu3+ nanowires and their luminescence properties

Yang Lü , Min Yang , Bin Yang , Wei Liu , Hongdan Zhang , Xudong Zhao , Xiaoyang Liu

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (2) : 175 -178.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (2) : 175 -178. DOI: 10.1007/s40242-015-4448-0
Article

Rapid microwave-assisted hydrothermal synthesis of SrWO4:Eu3+ nanowires and their luminescence properties

Author information +
History +
PDF

Abstract

SrWO4:Eu3+ nanowires were synthesized at 160 °C within 10 min via a microwave-assisted hydrothermal method. In examining the influences of synthesis temperature and reaction time on the morphology of nanowires, it was found that any temperatures and reaction time except 160 °C and 10 min gave rise to poorer morphologies under otherwise equal conditions. The synthesized nanowires were characterized by means of X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), high-resolution transmission electron microscopy(HRTEM), energy dispersive X-ray(EDX) and Raman spectrometry, respectively. The results suggest that the samples are homogenous and dispersive single phase nanowires. The photoluminescence properties of the nanowires were determined with a spectrofluorometer. Two obviously sharp peaks at 395 and 464 nm and a broad peak centered at 290 nm were found in their excitation spectrum. Under excitation at 395 and 464 nm, the 5 D 07 F 2 transition is the dominant process which means Eu3+ ion is located at a low symmetry site, while the 5 D 07 F 1 transition dominates under the excitation at 290 nm, showing a highly symmetric field around the Eu3+ ion, which indicates the presence of the two local Eu3+ environments.

Keywords

SrWO4:Eu3+ nanowire / Microwave-assisted hydrothermal method / Luminescence property

Cite this article

Download citation ▾
Yang Lü, Min Yang, Bin Yang, Wei Liu, Hongdan Zhang, Xudong Zhao, Xiaoyang Liu. Rapid microwave-assisted hydrothermal synthesis of SrWO4:Eu3+ nanowires and their luminescence properties. Chemical Research in Chinese Universities, 2015, 31(2): 175-178 DOI:10.1007/s40242-015-4448-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Errandonea D, Pellicer-Porres J, Manjón F J, Segura A, Ferrer-Roca C, Kumar R S, Tschauner O, Rodríguez-Hernández P, López-Solano J, Radescu S, Mujica A, Muñoz A, Aquilanti G. Phys. Rev. B, 2005, 72: 174106.

[2]

Mikhailik V B, Kraus H, Wahl D, Itoh M, Koike M, Bailiff I K. Phys. Rev. B, 2004, 69: 205110.

[3]

Shi H T, Qi L M, Ma J M, Cheng H M. Chem. Commun., 2002, 1704.

[4]

Hou Z Y, Li C X, Yang J, Lian H Z, Yang P P, Chai R T, Cheng Z Y, Lin J. J. Mater. Chem., 2009, 19: 2737.

[5]

Sczancoski J C, Cavalcante L S, Joya M R, Espinosa J W M, Pizani P S, Varela J A, Longo E. J. Colloid Interf. Sci., 2009, 330: 227.

[6]

Sun L N, Guo Q R, Wu X L, Luo S J, Pan W L, Huang K L, Lu J F, Ren L, Cao M H, Hu C W. J. Phys. Chem. C, 2007, 111: 532.

[7]

Fan J D, Zhang H J, Wang J Y, Jiang M H, Boughton R I, Ran D G, Sun S Q, Xia H R. J. Appl. Phys., 2006, 100: 063513.

[8]

Tang D H, Zhang W R, Wang Y F, Miao J, Qiao Z A, Huo Q S, Zhang L R. Chem. Res. Chinese Universities, 2014, 30(4): 531.

[9]

Nel A, Xia T, Mädler L, Li N. Science, 2006, 311: 622.

[10]

Feng L D, Chen X B, Mao C J. Mater. Lett., 2010, 64: 2420.

[11]

Thongtem T, Phuruangrat A, Thongtem S. Curr. Appl. Phys., 2008, 8: 189.

[12]

Peter A J, Banu I B S. J. Mater. Sci.: Mater. Electron., 2014, 25: 2771.

[13]

Zheng Y H, Lin J T, Wang Q M. Photochem. Photobiol. Sci., 2012, 11: 1567.

[14]

Ju Z H, Wei R P, Gao X P, Liu W S, Pang C R. Opt. Mater., 2011, 33: 909.

[15]

Li L Z, Yan B, Lin L X, Zhao Y. J. Mater. Sci.: Mater. Electron., 2011, 22: 1040.

[16]

Sun X Y, Sun X D, Li X G, He J, Wang B S. J. Mater. Sci.: Mater. Electron., 2014, 25: 2320.

[17]

Li L J, Cheng L J, Cai Z, Lan S M, Guo X F, Li Y Q. Chem. Res. Chinese Universities, 2010, 26(4): 537.

[18]

Zhang J C, Wang X F, Zhang X H, Zhao X D, Liu X Y, Peng L P. Inorg. Chem. Commun., 2011, 14: 1723.

[19]

Gao Y, Li L, Zhang X L, Wang L L, Zhang W Z, Huang X D. Chem. J. Chinese Universities, 2013, 34(11): 2629.

[20]

Hu H Y, Yang H, Huang P, Cui D X, Peng Y Q, Zhang J C, Lu F Y, Lian J, Shi D L. Chem. Commun., 2010, 46: 3866.

[21]

Zhu Y J, Chen F. Chem. Rev., 2014, 114: 6462.

[22]

Porta F A L, Ferre M M, Santana Y V B D, Raubach C W, Longo V M, Sambrano J R, Longo E, Andrés J, Li M S, Varela J A. J. Alloys Compd., 2013, 556: 153.

[23]

Xu B Y, Cao X, Wang G F, Li Y, Wang Y P, Su J M. Dalton Trans., 2014, 43: 11493.

[24]

Maheshwary, Singh B P, Singh J, Singh R A. RSC Adv., 2014, 4: 32605.

[25]

Liu Y, Liu G X, Wang J X, Dong X T, Yu W S. Inorg. Chem., 2014, 53: 11457.

[26]

Zhou Y J, Zhu H E, Zhang J, Wu S L, Yi C F, Xu Z S. Chem. J. Chinese Universities, 2013, 34(3): 732.

[27]

Huang M Y, Chen Y H, Chang B C, Lii K H. Chem. Mater., 2005, 17: 5743.

[28]

Shen J, Li Z Q, Cheng R, Luo Q, Luo Y D, Chen Y W, Chen X H, Sun Z, Huang S M. Appl. Mater. Interfaces, 2014, 6: 17454.

[29]

Ananias D, Kostova M, Paz F A A, Neto A N C, Moura R T D Jr., Malta O L, Carlos L D, Rocha J. J. Am. Chem. Soc., 2009, 131: 8620.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/