Synthesis of liquid-like trisilanol isobutyl-POSS NOHM and its application in capturing CO2

Haipeng Bai , Yaping Zheng , Peipei Li , Aibo Zhang

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 484 -488.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 484 -488. DOI: 10.1007/s40242-015-4443-5
Article

Synthesis of liquid-like trisilanol isobutyl-POSS NOHM and its application in capturing CO2

Author information +
History +
PDF

Abstract

The trisilanol isobutyl polyhedral oligomeric silsesquioxane(POSS) was fabricated into liquid-like nanoparticle organic hybrid materials(NOHMs) with γ-(2,3-epoxypropoxy)propytrimethoxysilane as corona and polyetheramine M2070 as canopy, and the product was called liquid-like POSS NOHM. The liquid-like POSS NOHM has a low viscosity at room temperature without any solvent and the mass fraction of trisilanol isobutyl POSS was 23.38%. The liquid-like POSS NOHM shows great CO2 capturing property with a capacity of 2.108 mmol/g(pCO2=6 MPa). The physical adsorption increased obviously with the pressure going up and it may make a difference between liquid-like POSS NOHMs and traditional monoethamolamine(MEA) based CO2 absorbent. The recycle property was also studied. The NOHM behaved as fresh product even after 10 cycles.

Keywords

Liquid-like nanoparticle organic hybrid material / Polyhedral oligomeric silsesquioxane / CO2 capture

Cite this article

Download citation ▾
Haipeng Bai, Yaping Zheng, Peipei Li, Aibo Zhang. Synthesis of liquid-like trisilanol isobutyl-POSS NOHM and its application in capturing CO2. Chemical Research in Chinese Universities, 2015, 31(3): 484-488 DOI:10.1007/s40242-015-4443-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Eric D., Maryline R., Serge B. Fire Mater., 2002, 26(4/5): 149.

[2]

Libor M., Piotr M., Josef P. Eur. Polym. J., 2012, 48(2): 260.

[3]

Zhang Z. P., Liang G. Z., Wang J. L., Ren P. G. Polymer Composites, 2007, 28(2): 175.

[4]

Zhu Y. F., Zhao J. F., Wang X., Li Q. F. Chem. Res. Chinese Universities, 2008, 24(5): 570.

[5]

Chen G. Y., Feng B. X., Zhu K. Y., Zhao Y. H., Yuan X. Y. Chem. Res. Chinese Universities, 2015, 31(2): 303.

[6]

Cor K., Martin V. D., Christophe P., Robert J. Prog. Polym. Sci., 1998, 23(4): 707.

[7]

Zhang J. X., Zheng Y. P., Lan L., Mo S., Yu P. Y., Shi W., Wang R. M. ACS NANO, 2009, 3(8): 2185.

[8]

Jiang Z. Y., Zhou Y., Huang F. R., Du L. Chinese J. Polym. Sci., 2011, 29(6): 726.

[9]

Bourlinos A. B., Giannelis E. P., Zhang Q., Archer L. A., Floudas G., Fytas G. Eur. Phys. J. E., 2006, 20(1): 109.

[10]

Jerman I., Mihelcic M., Verhovšek D., Kovac J., Orel B. Sol. Energ. Mat. Sol. C, 2011, 95(2): 423.

[11]

Chang Y., Wang E., Shin G., Han J., Mather P. Polym. Advan. Technol., 2007, 18(7): 535.

[12]

Yu C. H., Huang C. H., Tan C. S. Aerosol. Air Qual. Res., 2012, 12: 745.

[13]

Lin K. Y., Park A. H. Environ. Sci. Technol., 2011, 45(15): 6633.

[14]

Zhang L. G., Cai K., Zhang F., Yue Q. F. Chem. Res. Chinese Universities, 2015, 31(1): 130.

[15]

Li Q., Dong L. J., Deng W., Zhu Q. M., Liu Y., Xiong C. X. J. Am. Chem. Soc., 2009, 131(26): 9148.

[16]

Li Q., Dong L. J., Fang J. F., Xiong C. X. ACS NANO, 2010, 4(10): 5797.

[17]

Petit C., Park Y. J., Lin K. Y., Park A. H. J. Phys. Chem. C, 2012, 116(1): 516.

[18]

Zhang Y. X., Mao X. B., Ren S. Y., Ma C. Chem. Res. Chinese Universities, 2014, 30(2): 293.

[19]

Popescu A. M., Cojocaru A., Donath C., Constantin V. Chem. Res. Chinese Universities, 2013, 29(5): 991.

[20]

Su F. S., Lu C. Y., Chen H. S. Langmuir, 2011, 27(13): 8090.

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/