Preparation of magnetic TS-1 and its catalytic activity

Yu Li , Zehui Xue , Qi Zhang , Cuitao Sun , Junping Li , Laishuan Liu

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 430 -433.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 430 -433. DOI: 10.1007/s40242-015-4434-6
Article

Preparation of magnetic TS-1 and its catalytic activity

Author information +
History +
PDF

Abstract

Magnetic TS-1 was synthesized with nanosized nickelferrite particles as nuclei via the hydrothermal synthesis and solvent vaporation method. The prepared samples were characterized with N2 adsorption-desorption isotherms, FTIR spectrometry, Raman spectrometry, X-ray diffraction, Ultraviolet-visible spectroscopy and Vibrating sample magnetometry. The results show that the composite obtained was composed of TS-1 with MFI structure and NiFe2O4 with spinel structure, its specific surface area was about 316 m2/g, pore volume was 0.12 cm3/g and pore size distribution was in the range of 0.5–0.7 nm. The catalytic activity of the composite was also investigated by its catalyzing the decomposition of rhodamine B oxidized by H2O2 in aqueous solution. In this case Rhodamine B pollutant could be completely degraded within 150 min. Magnetic TS-1 exhibited high photocatalytic efficiency and super paramagnetic nature for cleaning polluted water with the help of magnetic separation.

Keywords

Magnetic catalyst / Titanium silicalite-1 / Catalytic decomposition

Cite this article

Download citation ▾
Yu Li, Zehui Xue, Qi Zhang, Cuitao Sun, Junping Li, Laishuan Liu. Preparation of magnetic TS-1 and its catalytic activity. Chemical Research in Chinese Universities, 2015, 31(3): 430-433 DOI:10.1007/s40242-015-4434-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Taramasso M., Perego G., Notari B. Preparation of Porous Crystalline Synthetic Material Comprised of Silicon and Titanium Oxides, 1983.

[2]

Xu Y. M., Wang R. S. Chem. J. Chinese Universities, 1999, 20(7): 1002.

[3]

Vasile A., Busuioc-Tomoiaga A. M. Materials Research Bulletin, 2012, 47: 35.

[4]

Wang R. W., Hu L., Chu B., Zhu G. S., Qiu S. L. Chem. J. Chinese Universities, 2004, 25(8): 1485.

[5]

Wang D. Q., Li Y., Liu L. S., Li J. P., Zhang R. Chem. J. Chinese Universities, 2012, 33(12): 2722.

[6]

Zhu G. W., Chen X. B., Jiang H., Huang J., Wang R. W., Qiu S. L. Chem. Res. Chinese Universities, 2013, 29(6): 1036.

[7]

Kim J. H., Do Y. J., Park J. H., Park S. S., Hong S. S., Lee G. D. Kinet. Catal. Lett., 2004, 83(2): 377.

[8]

Cojocariu A. M., Mutin P. H., Dumitriu E., Vioux A., Fajula F., Hulea V. Chemosphere, 2009, 77: 1065.

[9]

Lee G. D., Jung S. K., Jeong Y. J., Park J. H., Lim K. T., Ahn B. H., Hong S. S. Appl. Catal. A: Gen., 2003, 239: 197.

[10]

Zhang J., Zhao D. S., Yang L.Y., Li Y. B. Chemical Engineering Journal, 2010, 156: 528.

[11]

Hourdin G., Germain A., Moreau C., Fajula F. Catalysis Letters, 2000, 69: 241.

[12]

Beydoun D., Amal R., Low G. K. C., Setphen M. J. Phys. Chem. B, 2000, 104(18): 4387.

[13]

Kurinobu S., Tsurusaki K., Natuic Y., Kimata M., Hasegawa M. Journal of Magnetism and Magnetic Materials, 2007, 310: 1025.

[14]

Li Y., Dong X. F., Li J. P. Particuology, 2011, 9(5): 475.

[15]

Yuan J., Y. K., Li Y., Li J. P. Chem. Res. Chinese Universities, 2010, 26(2): 278.

[16]

Li C., Xiong G., Liu J. K., Ying P. L., Xin Q., Feng Z. C. J. Phys. Chem. B, 2001, 105(15): 2993.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/