Flexible triboelectric nanogenerator from micro-nano structured polydimethylsiloxane

Xinze Xiao , Chao Lü , Gong Wang , Ying Xu , Jiping Wang , Hai Yang

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 434 -438.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 434 -438. DOI: 10.1007/s40242-015-4432-8
Article

Flexible triboelectric nanogenerator from micro-nano structured polydimethylsiloxane

Author information +
History +
PDF

Abstract

Triboelectric nanogenerator(TENG) can convert mechanical energy to electrical energy through contact electrification and electrostatic induction. Single-friction-surface triboelectric nanogenerator(STENG) extends potential application because a finger can be used as one friction surface in the contact electrification. In this work, a fully flexible STENG has been made, consisting of polydimethylsiloxane(PDMS) with micro-nano structures on its observe side and a flexible electrode on its reverse side. The femtosecond laser ablation was introduced to make micro-nano structures on PDMS and Ag nanowires(Ag NWs) were embedded in PDMS to serve as flexible induction electrode. It has been demonstrated that the energy conversion efficiency increases greatly because of the existing micro-nano structures on PDMS. Further, the mechanism of STENG was proved. Owing to the fully flexible characteristics in both the electrode and PDMS, STENG works well when it is adhered on any subject, for example, on clothes by tape.

Keywords

Flexible triboelectric nanogenerator / Femtosecond laser / Micro-nano structured polydimethylsiloxane / Silver nanowire

Cite this article

Download citation ▾
Xinze Xiao, Chao Lü, Gong Wang, Ying Xu, Jiping Wang, Hai Yang. Flexible triboelectric nanogenerator from micro-nano structured polydimethylsiloxane. Chemical Research in Chinese Universities, 2015, 31(3): 434-438 DOI:10.1007/s40242-015-4432-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Elimelech M., Philip W. A. Science, 2011, 333(6043): 712.

[2]

Tong H., Ouyang S., Bi Y., Umezawa N., Oshikiri M., Ye J. Adv. Mater., 2012, 24(2): 229.

[3]

Beeby S. P., Tudor M. J., White N. M. Meas. Sci. Technol., 2006, 17(12): 175.

[4]

Wang Z. L., Wu W. Angew. Chem. Int. Ed., 2012, 51(47): 11700.

[5]

Wang Z. L., Song J. Science, 2006, 312(5771): 242.

[6]

Chang C., Tran V. H., Wang J., Fuh Y. K., Lin L. Nano Lett., 2010, 10(2): 726.

[7]

Chen X., Xu S., Yao N., Shi Y. Nano Lett., 2010, 10(6): 2133.

[8]

Sari I., Balkan T., Kulah H. Sensors and Actuators A, 2008, 145: 405.

[9]

Song M., Cheng M., Ju G., Zhang Y., Shi F. Adv. Mater., 2014, 26(41): 7059.

[10]

Beeby S. P., Torah R. N., Tudor M. J., Glynee-Jones P., O’Donnel T., Saha C. R., Roy S. J. Micromech. Microeng., 2007, 17(7): 1257.

[11]

Chen J., Chen D., Yuan T., Chen X. Appl. Phys. Lett., 2012, 100(21): 213509.

[12]

Que R., Shao M., Wang S., Ma D. D. D., Lee S. T. Nano Lett., 2011, 11(11): 4870.

[13]

Tian H., Ma S., Zhao H. M., Wu C., Ge J., Xie D., Yang Y., Ren T. L. Nanoscale, 2013, 5(19): 8951.

[14]

Wang C., Cai L., Feng Y., Chen L., Yan W., Liu Q., Hu F., Pan Z., Sun Z., Wei S. Appl. Phys. Lett., 2014, 104(24): 243112.

[15]

Fan F. R., Tian Z. Q., Wang Z. L. Nano Energy, 2012, 1(2): 328.

[16]

Fan F. R., Lin L., Zhu G., Wu W., Zhang R., Wang Z. L. Nano Lett., 2012, 12(6): 3109.

[17]

Meng B., Tang W., Too Z., Zhang X., Han M., Liu W., Zhang X. Energy Environ. Sci., 2013, 6(11): 3235.

[18]

Yang Y., Zhang H., Lin Z. H., Zhou Y. S., Jing Q., Su Y., Yang J., Chen J., Hu C., Wang Z. L. ACS Nano, 2013, 7(10): 9213.

[19]

Zhang Y. L., Chen Q. D., Xia H., Sun H. B. Nano Today, 2010, 5(5): 435.

[20]

Gao B. R., Wang H. Y., Hao Y. W., Fu L. M., Fang H. H., Jiang Y., Wang L., Chen Q. D., Xia H., Pan L. Y., Ma Y. G., Sun H. B. J. Phys. Chem. B, 2010, 114(1): 128.

[21]

Fang H. H., Yang J., Feng J., Yamao T., Hotta S., Sun H. B. Laser Photon. Rev., 2014, 8(5): 687.

[22]

Witte S., Tenner V. T., Noom D. W., Eikema K. S. Light Sci. Appl., 2014, 3: e163.

[23]

Feng J., Li F., Gao W., Liu S. Y., Liu Y., Wang Y. Appl. Phys. Lett., 2001, 78(25): 3947.

[24]

Zhang Y. L., Guo L., Wei S., He Y. Y., Chen Q. D., Sun H. B. Nano Today, 2010, 5(1): 15.

[25]

Xia H., Wang J., Tian Y., Chen Q. D., Du X. B., Zhang Y. L., He Y., Sun H. B. Adv. Mater., 2010, 22(29): 3204.

[26]

Ren L., Wang D., Sun G. T., Niu L. G., Yang H., Song J. F. Chem. Res. Chinese Universities, 2011, 27(1): 113.

[27]

Sun Q., Ueno K., Yu H., Kubo A., Matsuo Y., Misawa H. Light Sci. Appl., 2013, 2: e118.

[28]

Yang J., Wang R., Ding R., Li A. W., Yu Y. S., Wang J. P., Yang H. Chem. Res. Chinese Universities, 2011, 27(6): 1045.

[29]

Wang L., Xu B. B., Chen Q. D., Ma Z. C., Zhang R., Liu X. Q., Sun H. B. Opt. Lett., 2011, 36(17): 3305.

[30]

Wang C., Zhu F., Ren L., Li A. W., Chen C., Yang R., Guo J. C., Xue Y., Zhang X. Y., Zhu C. C. Chem. Res. Chinese Universities, 2013, 29(6): 1199.

[31]

Xu B. B., Zhang Y. L., Wei S., Ding H., Sun H. B. Chem. Cat. Chem., 2013, 5(8): 2091.

[32]

Guo L., Zhang Y. L., Shao R. Q., Xie S. Y., Wang J. N., Li X. B., Jiang F., Jiang H. B., Chen Q. D., Zhang T., Sun H. B. Carbon, 2012, 50(4): 1667.

[33]

Yang R., Yu Y. S., Xue Y., Chen C., Chen Q. D., Sun H. B. Opt. Lett., 2011, 36(23): 4482.

[34]

Wu D., Wu S. Z., Chen Q. D., Zhang Y. L., Yao J., Yao X., Niu L. G., Wang J. N., Jiang L., Sun H. B. Adv. Mater., 2011, 23(4): 545.

[35]

Sun Y. L., Dong W. F., Niu L. G., Jiang T., Liu D. X., Zhang L., Wang Y. S., Kim D. P., Chen Q. D., Sun H. B. Light Sci. Appl., 2014, 3: e129.

[36]

Wang Z. L. ACS Nano, 2013, 7(11): 9533.

[37]

Zhu G., Lin Z. H., Jing Q., Bai P., Pan C., Yang Y., Zhou Y., Wang Z. L. Nano Lett., 2013, 13(2): 847.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/