Improved visible-light photocatalytic properties of ZnFe2O4 synthesized via sol-gel method combined with a microwave treatment

Jing Feng , Yuting Wang , Linyi Zou , Bowen Li , Xiaofeng He , Shengna Liu , Tingting Chen , Zhuangjun Fan , Yueming Ren , Yanzhuo Lü

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 439 -442.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 439 -442. DOI: 10.1007/s40242-015-4428-4
Article

Improved visible-light photocatalytic properties of ZnFe2O4 synthesized via sol-gel method combined with a microwave treatment

Author information +
History +
PDF

Abstract

ZnFe2O4(ZFO) was synthesized via a sol-gel method firstly, then the ZFO was irradiated with microwave treatment to obtain M-ZFO using NH4Cl as dispersant for 10 min to improve the photocatalytic activity. Large particles of ZFO were broken into small and uniform particles by the gases of hydrogen chlorine and ammonia during the decomposition of NH4Cl. Compared to ZnFe2O4 without microwave treatment(ZFO), M-ZFO exhibits smaller particle size, higher surface area and larger saturation magnetization. More importantly, the photocatalytic activity of M-ZFO for methylene blue was increased by 25% compared with that of ZFO.

Keywords

Photocatalyst / Microwave treatment / ZnFe2O4

Cite this article

Download citation ▾
Jing Feng, Yuting Wang, Linyi Zou, Bowen Li, Xiaofeng He, Shengna Liu, Tingting Chen, Zhuangjun Fan, Yueming Ren, Yanzhuo Lü. Improved visible-light photocatalytic properties of ZnFe2O4 synthesized via sol-gel method combined with a microwave treatment. Chemical Research in Chinese Universities, 2015, 31(3): 439-442 DOI:10.1007/s40242-015-4428-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amin N. K. Desalination, 2008, 223: 152.

[2]

Mahmoodi N. M., Arami M., Zhang J. J. Alloy. Compd., 2011, 509: 4754.

[3]

Wu Y., Zhang S., Zhang L., Zhu Y. Chem. Res. Chinese Universities, 2007, 23(4): 465.

[4]

Liu S., Yu J., Wang W. Phys. Chem. Chem. Phys., 2010, 12: 12308.

[5]

Widchaya R., Araya T., Ratchaneekorn W. Chem. Res. Chinese Universities, 2014, 30(1): 149.

[6]

Anpo M., Takeuchi M. J. Catalysis, 2003, 216: 505.

[7]

Wang Y., Wang Q., Zhan X., Wang F., Safdar M., He J. Nanoscale, 2013, 5: 8326.

[8]

Tezuka K., Kogure M., Shan Y. J. Catalysis Comm., 2014, 48: 11.

[9]

Cao X., Gu L., Lan X., Zhao C., Yao D., Sheng W. Mater. Chem. Phys., 2007, 106: 175.

[10]

Cheng P., Li W., Zhou T., Jin Y., Gu M. J. Photochemistry Photobiology A: Chemistry, 2004, 168: 97.

[11]

Mahmoodi N. M. Mater. Res. Bull., 2013, 48: 4255.

[12]

Fu Y., Wang X. Ind. Eng. Chem. Res., 2011, 50: 7210.

[13]

Li Z. H., Zou X., Li G., Zou G. T. Chem. Res. Chinese Universities, 2012, 28(4): 712.

[14]

Borhan A. I., Samoila P., Hulea V., Iordan A. R., Palamaru M. N. J. Photochem. Photobiol. A, 2014, 279: 17.

[15]

Manikandan A., Judith V. J., Kennedy J. L., Bououdina M. Ceramics International, 2013, 39: 5909.

[16]

Sertkol M., Köseoglu Y., Baykal A., Kavas H., Bozkurt A., Toprak M.S. J. Alloys Compd., 2009, 486: 325.

[17]

Köseoglu Y., Baykal A., Gözüak F., Kavas H. Polyhedron, 2009, 28: 2887.

[18]

Sertkol M., Köseoglu Y., Baykal A., Kavas H., Toprak M. S. J. Magn. Magn. Mater., 2010, 322: 866.

[19]

Ragupathi C., Vijaya J. J., Kennedy L. J. Mater. Sci. Eng. B, 2014, 184: 18.

[20]

Rameshbabu R., Ramesh R., Kanagesan S., Karthigeyan A., Ponnusamy S. J. Mater. Sci: Mater Electron, 2013, 24: 4279.

[21]

Gao Z., Cui F., Zeng S., Guo L., Shi J. Microporous Mesoporous Mater., 2010, 132: 188.

[22]

Han L., Zhou X., Wan L., Deng Y., Zhan S. J. Envir. Chem. Engin., 2014, 2: 123.

[23]

Woan K., Pyrgiotakis G., Sigmund W. Adv. Mater., 2009, 21: 2233.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/