Synthesis and secondary conformations of homochiral β-oligopeptides containing aryl side chains

Yonghong Zhang , Liangchun Li , Weicheng Yuan , Xiaomei Zhang

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 381 -387.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 381 -387. DOI: 10.1007/s40242-015-4423-9
Article

Synthesis and secondary conformations of homochiral β-oligopeptides containing aryl side chains

Author information +
History +
PDF

Abstract

A series of novel homochiral α-oligopeptides bearing aryl side chains was designed and synthesized from (S)-α-phenyl-α-amino acid derivatives by solution-phase methods. By means of circular dichroism(CD), Fouriertransform infrared spectrometry(FTIR), powder X-ray diffraction analysis(XRD) and density functional theory(DFT) calculations, we suggest that dipeptide P-2 and tripeptide P-3 adopt random coil-like conformations, pentapeptide P-5 and hexapeptide P-6 adopt stable 12-helix conformations in both solution and solid-state. Meanwhile, tetrapeptide P-4 adopt random coil-like conformation in solution and adopt 12-helix conformation in solid state.

Keywords

α-Amino acid / α-Oligopeptide / Conformation

Cite this article

Download citation ▾
Yonghong Zhang, Liangchun Li, Weicheng Yuan, Xiaomei Zhang. Synthesis and secondary conformations of homochiral β-oligopeptides containing aryl side chains. Chemical Research in Chinese Universities, 2015, 31(3): 381-387 DOI:10.1007/s40242-015-4423-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Appella D. H., Christianson L. A., Klein D. A., Powell D. R., Huang X. L., Barchi J. J., Gellman S. H. Nature, 1997, 387: 381.

[2]

Gellman S. H. Acc. Chem. Res., 1998, 31: 173.

[3]

Cheng R. P., Gellman S. H., DeGrado W. F. Chem. Rev., 2001, 101: 3219.

[4]

Seebach D., Matthews J. L. Chem. Commun., 1997, 2015.

[5]

Seebach D., Beck A. K., Bierbaum D. J. Chem. Biodiversity, 2004, 1: 1111.

[6]

Gademann K., Hintermann T., Schreiber J. V. Curr. Med. Chem., 1999, 6: 905.

[7]

Goodman C. M., Choi S., Shandler S., DeGrado W. F. Nat. Chem. Biol., 2007, 3: 252.

[8]

Chen Z. Z., Li Y. M., Zhao G., Zhao Y. F. Chemistry, 1999, 57: 21.

[9]

Wang J. X., Qin S. Y., Cai T. T., Zhang X. Z., Zhuo R. X. Chem. J. Chinese Universites, 2015, 36(1): 201.

[10]

Wang Q., Li X. Q., Ma S. Chem. J. Chinese Universites, 2014, 35(12): 2674.

[11]

Armand P., Kirshenbaum K., Goldsmith R. A., Farr-Jones S., Barron A. E., Truong K. T. V., Dill K. A., Mierke D. F., Cohen F. E., Zuckermann R. N., Bradley E. K. Proc. Natl. Acad. Sci. USA, 1998, 95: 4309.

[12]

Wu C. W., Kirshenbaum K., Sanborn T. J., Patch J. A., Huang K., Dill K. A., Zuckermann R. N., Barron A. E. J. Am. Chem. Soc., 2003, 125: 13525.

[13]

Suhara Y., Kurihara M., Kittaka A., Ichikawa Y. Tetrahedron, 2006, 820.

[14]

Lin P., Ganesan A. Bioorg. Med. Chem. Lett., 1998, 8: 511.

[15]

Stigers K. D., Soth M. J., Nowick J. S. Curr. Opin. Chem. Biol., 1999, 3: 714.

[16]

Hann M. M., Sammes P. G., Kennewell P. D., Taylor J. B. J. Chem. Soc., Chem. Commun., 1980, 234.

[17]

Cox M. T., Heaton D. W., Horbury J. J. Chem. Soc., Chem. Commun., 1980, 799.

[18]

Sharma G. V. M., Yadav T. A., Choudhary M., Kunwar A. C. J. Org. Chem., 2012, 77: 6834.

[19]

Lai J. R., Fisk J. D., Weisblum B., Gellman S. H. J. Am. Chem. Soc., 2006, 128: 7148.

[20]

Krauthauser S., Christianson L. A., Powell D. R., Gellman S. H. J. Am. Chem. Soc., 1997, 119: 11719.

[21]

Torres E., Acosta-Silva C., Rúa F., Álvarez-Larena, Parella T., Branchadell V., Ortuno R. M. Tetrahedron, 2009, 5669.

[22]

Pawar N. J., Sidhu N. S., Sheldrick G. M., Dhavale D. D., Diederichsen U. Beilstein J. Org. Chem., 2014, 10: 948.

[23]

Sharma G. V. M., Ravindranath H., Bhaskar A., Basha S. J., Reddy P. R. G. G., Sirisha K., Sarma A. V. S., Hofmann H. J. Eur. J. Org. Chem, 2014, 4295.

[24]

Sharma G. V. M., Reddy K. S., Basha S. J., Reddy K. R., Sarma A. V. S. Org. Biomol. Chem., 2011, 9: 8102.

[25]

Mosca S., Dannehl C., Möginger U., Brezesinski G., Hartmann L. Org. Biomol. Chem., 2013, 11: 5399.

[26]

Cho J., Sawaki K., Hanashima S., Yamaguchi Y., Shiro M., Saigoe K., Ishida Y. Chem. Commun., 2014, 50: 9855.

[27]

Lee W., Kwon S., Kang P., Guzeib I. A., Choi S. H. Org. Biomol. Chem., 2014, 12: 2641.

[28]

Honcharenko D., Bose P. P., Maity J., Kurudenkandy F. R., Juneja A., Flöistrup E., Biverstål H., Johansson J., Nilsson L., Fisahnb A., Strömberg R. Org. Biomol. Chem., 2014, 12: 6684.

[29]

Németh L. J., Hegedüs Z., Martinek T. A. J. Chem. Inf. Model., 2014, 54: 2776.

[30]

van der Knaap M., Otero J. M., Llamas-Saiz A., van Raaij M. J., Lageveen L., Busscher H. J., Grotenbreg G. M., van der Marel G. A., Overkleeft H. S., Overhand M. Tetrahedron, 2012, 68: 2391.

[31]

Price J. L., Horne W. S., Gellman S. H. J. Am. Chem. Soc., 2010, 132: 12378.

[32]

Sharma G. V. M., Reddy P. S., Chatterjee D., Kunwar A. C. J. Org. Chem., 2011, 76: 1562.

[33]

Norgren A. S., Arvidsson P. I. J. Org. Chem., 2008, 73: 5272.

[34]

Lin Y. C., Petersson E. J., Fakhraai Z. ACS Nano, 2014, 8: 10178.

[35]

Ghorai A., Reddy K. S., Achari B., Chattopadhyay P. Org. Lett., 2014, 16: 3196.

[36]

Liu D., DeGrado W. F. J. Am. Chem. Soc., 2001, 123: 7553.

[37]

Porter E. A., Wang X., Lee H. S., Weisblum B., Gellman S. H. Nature, 2000, 404: 565.

[38]

Werder M., Hauser H., Abele S., Seebach D. Helv. Chim. Acta, 1999, 82: 1774.

[39]

Raguse T. L., Porter E. A., Weisblum B., Gellman S. H. J. Am. Chem. Soc., 2002, 124: 12774.

[40]

Karlsson A. J., Pomerantz W. C., Weisblum B., Gellman S. H., Palecek S. P. J. Am. Chem. Soc., 2006, 128: 12630.

[41]

Venkatraman J., Shankaramma S. C., Balaram P. Chem. Rev., 2001, 101: 3131.

[42]

Seebach D., Beck A. K., Capone S., Deniau G., Grošelj U., Zass E. Synthesis, 2009, 1.

[43]

Hill D. J., Mio M. J., Prince R. B., Hughes T. S., Moore J. S. Chem. Rev., 2001, 101: 3893.

[44]

Appella D. H., Christianson L. A., Klein D. A., Richards M. R., Powell D. R., Gellman S. H. J. Am. Chem. Soc., 1999, 121: 7574.

[45]

Motorina I. A., Huel C., Quiniou E., Mispelter J., Adjadj E., Grierson D. S. J. Am. Chem. Soc., 2001, 123: 8.

[46]

Li X., Wu Y. D., Yang D. Acc. Chem. Res., 2008, 41: 1428.

[47]

Olsen C. A., Bonke G., Vedel L., Adsersen A., Witt M., Franzyk H., Jaroszewski J. W. Org. Lett., 2007, 9: 1549.

[48]

Dill K. A. Biochemistry, 1990, 29: 7133.

[49]

Saraogi I., Hamilton A. D. Chem. Soc. Rev., 2009, 38: 1726.

[50]

Zheng H. J., Chen W. B., Wu Z. J., Deng J. G., Lin W. Q., Yuan W. C., Zhang X. M. Chem. Eur. J., 2008, 14: 9864.

[51]

Chen X., Hu X. Y., Shu C., Zhang Y. H., Zheng Y. S., Jiang Y., Yuan W. C., Liu B., Zhang X. M. Org. Biomol. Chem., 2013, 11: 3089.

[52]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr, Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam M. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas, Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, Revision^A.01, Gaussian Inc., 2009.

[53]

Woody R. W. Circular Dichroism: Principles and Applications, 1994, 24: 473.

[54]

Applequist J., Bode K. A., Appella D. H., Christianson L. A., Gellman S. H. J. Am. Chem. Soc., 1998, 120: 4891.

[55]

Tew D. J., Bottomley S. P., Smith D. P., Ciccotosto G. D., Babon J., Hinds M. G., Masters C. L., Cappai R., Barnham K. J. Biophys. J., 2008, 94: 2752.

[56]

Maji S. K., Loo R. R. O., Inayathullah M., Spring S. M., Vollers S. S., Condron M. M., Bitan G., Loo J. A., Teplow D. B. J. Biol. Chem., 2009, 284: 23580.

[57]

Dado G. P., Gellman S. H. J. Am. Chem. Soc., 1994, 116: 1054.

[58]

Bode K. A., Applequist J. Macromolecules, 1997, 30: 2144.

[59]

Pandey S. K., Jogdand G. F., Oliveira J. C. A., Mata R. A., Rajamohanan P. R., Ramana C. V. Chem. Eur. J., 2011, 17: 12946.

[60]

Demizu Y., Doi M., Kurihara M., Maruyama T., Suemune H., Tanaka M. Chem. Eur. J., 2012, 18: 2430.

[61]

Yang D., Liu G. J., Hao Y., Li W., Dong Z. M., Zhang D. W., Zhu N. Y. Chem. Asian J., 2010, 5: 1356.

[62]

Wu Y. D., Han W., Wang D. P., Gao Y., Zhao Y. L. Acc. Chem. Res., 2008, 41: 1418.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/