Preparation of TiO2 nanoflakes and their influence on lithium ion battery storage performance

Yi Li , Xiangbo Han , Jicai Liang , Xuning Leng , Kaiqi Ye , Changmin Hou , Kaifeng Yu

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 332 -336.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 332 -336. DOI: 10.1007/s40242-015-4421-y
Article

Preparation of TiO2 nanoflakes and their influence on lithium ion battery storage performance

Author information +
History +
PDF

Abstract

TiO2 nanoflakes were prepared by hydrothermal precipitation method using Ti(SO4)2 as titanium source and NaOH solution as alkaline medium. Their surface morphology, grain size measured after high temperature calcination and effect on the electrochemical performance of Li ion battery were discussed. TiO2 nanoflakes were characterizated by means of transmission electron microscopy(TEM), X-ray powder diffraction(XRD), N2 adsorption- desorption isothermal assay, cyclic voltammetry(CV) and cycle performance test. The result of electrochemical performance test shows that the prepared TiO2 nanoflakes have high discharge specific capacity and good cycle performance. Discharge specific capacity for the first circle at the discharge rate of 0.1 C is 261.5 mA·h·g-1. After 90 cycles, the discharge capacity reduces to 172.2 mA·h·g-1.

Keywords

Heat treatment / TiO2 nanoflake / Lithium-ion battery

Cite this article

Download citation ▾
Yi Li, Xiangbo Han, Jicai Liang, Xuning Leng, Kaiqi Ye, Changmin Hou, Kaifeng Yu. Preparation of TiO2 nanoflakes and their influence on lithium ion battery storage performance. Chemical Research in Chinese Universities, 2015, 31(3): 332-336 DOI:10.1007/s40242-015-4421-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhu L. Y., Liu X. T., Qin W. W., Liu X. S., Cai N. N., Wang X. Q., Lin X. J., Zhang G. H., Xu D. Materials Research Bulletin, 2013, 48: 2737.

[2]

Yu J. C., Yu J. G., Ho W. K., Jiang Z. T., Zhang L. Z. Chem. Mater., 2002, 143: 808.

[3]

Yuan Z. H., Jia J. H., Zhang L. D. Mater. Mater. Chem. Phys., 2002, 73: 323.

[4]

Wang J., Zhou Y. K., Shao Z. P. Electrochimica Acta, 2013, 97: 386.

[5]

Chen J. S., Liu H., Qiao S. Z., Lou X. W. Journal of Materials Chemistry, 2011, 21: 5687.

[6]

Ortiz G. F., Hanzu I., Knauth P., Lavela P., Tirado J. L., Djenizian T. Electrochimica Acta, 2009, 54: 4262.

[7]

Guo H., Tian D. X., Liu L. X., Wang Y. P., Guo Y., Yang X. G. Journal of Solid State Chemistry, 2013, 201: 137.

[8]

Gao P., Bao D., Wang Y., Chen Y. J., Wang L. Q., Yang S. Q., Chen G. R., Li G. B., Sun Y. Z., Qin W. ACS Appl. Mater. & Interfaces, 2013, 5: 368.

[9]

Lee K. H., Song S. W. ACS Appl. Mater. & Interfaces, 2011, 3: 3697.

[10]

Lan T. B., Liu Y. B., Dou J., Hong Z. S., Wei M. D. Journal of Materials Chemistry A, 2014, 2: 1102.

[11]

Wang W. S., Sa Q. N., Chen J. H., Wang Y., Yin Y. D. ACS Appl. Mater. & Interfaces, 2013, 5: 6478.

[12]

Lee S., Ha J., Choi J., Song T., Lee J. W., Park U. ACS Appl. Mater. & Interfaces, 2013, 5: 11525.

[13]

Nie G. D., Li S. K., Lu X. F., Wang C. Chem. J. Chinese Universities, 2013, 34(1): 15.

[14]

Souvereyns B., Elen K., Dobbelaere C. D., Kelchtermans A., Peys N., Mertensc M., Mullens S. Chemical Engineering Journal, 2013, 223: 135.

[15]

Kim S. J., Park S. D., Jeong Y. H., Park S. J. Amer. Cer. Soc., 1999, 82(4): 927.

[16]

Zheng Y. Q., Shi E. W., Cui S. X., Li W. J., Hu X. F. Journal of Materials Science Letters, 2000, 19: 1445.

[17]

Li H. G., Michel V., Gilles B., Li D. D., Nie H., Pavel A. Materials Research Bulletin, 2013, 48: 3374.

[18]

Zheng Y. Q., Shi E., Yuan R. L., Li W. J., Wang B. G., Zhong W. Z., X. Hu G. Science in China Series E, 1999, 42: 302.

[19]

Simpraditpan A., Wirunmongkol T., Pavasupree S., Pecharapa W. Ceramics International, 2013, 39: 2497.

[20]

Wang H. E., Jin J., Cai Y., Xu J. M., Chen D. S., Zheng X. F., Deng Z., Li Y., Igor B., Su B. L. Journal of Colloid and Interface Science, 2014, 417: 144.

[21]

Tang H., Zhang D., Tang G. G., Ji X. R., Li C. H., Yan X. H., Wu Q. Journal of Alloys and Compounds, 2014, 59: 152.

[22]

Wang R., Cai X., Shen F. L. Ceramics International, 2013, 39: 9465.

[23]

Saravanan K., Ananthanarayanan K., Balaya P. Energy Environ. Sci., 2010, 3: 939.

[24]

Qiu J. X., Zhang P., Ling M., Li S., Liu P. R., Zhao H. J., Zhang S. Q. ACS Appl. Mater. & Interfaces, 2012, 4: 3636.

[25]

Armstrong A. R., Armstrong G., Canales J., Bruce P. G. J. Power Sources, 2005, 14: 6501.

[26]

Xu J. W., Wang Y. F., Li Z. H., Zhang W. F. Journal of Power Sources, 2008, 175: 903.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/