Highly selective fluorescent chemosensor for Cu2+

Jie Guan , Peng Zhang , Taibao Wei , Qi Lin , Hong Yao , Youming Zhang

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 347 -351.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 347 -351. DOI: 10.1007/s40242-015-4403-0
Article

Highly selective fluorescent chemosensor for Cu2+

Author information +
History +
PDF

Abstract

A new Zn2+ probe L2-Zn(L2=naphthofuran carbonylhydrazone derivant) was synthesized as a fluorescence chemosensor for Cu2+, by which Cu2+ ion could be detected with high selectivity and sensitivity in a wide pH range via a displacement “turn-off” signaling strategy. Whereas the coordination between Zn2+ and L2 resulted in a considerable enhancement of typical luminescence of a naphthalofuran group in complex L2-Zn, the addition of Cu2+ ion led to a dramatic decrease in the emission intensity of probe L2-Zn at about 503 nm(excitation at 423 nm). The competitive fluorescent experiments showed that other metal ions, such as Hg2+, Fe3+, Ag+, Ca2+, Co2+, Ni2+, Cd2+, Pb2+, Zn2+, Cr3+ and Mg2+ could not impact the detection of Cu2+. The detection limit of the novel probe L2-Zn for Cu2+ ion was as low as 2.3×10–7 mol/L, which is far lower than the guideline value of 1.6×10–5 mol/L of the United States Environmental Protection Agency.

Keywords

Znic complex / Fluorescent switch / Copper ion / Turn-off signal

Cite this article

Download citation ▾
Jie Guan, Peng Zhang, Taibao Wei, Qi Lin, Hong Yao, Youming Zhang. Highly selective fluorescent chemosensor for Cu2+. Chemical Research in Chinese Universities, 2015, 31(3): 347-351 DOI:10.1007/s40242-015-4403-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shiraishi Y., Tanaka K., Hirai T. ACS Appl. Mater. Interfaces, 2013, 8: 3456.

[2]

Kelly B., Rozas I. Tetrahedron Lett., 2013, 54: 3982.

[3]

Shao X. L., Gu H., Wang Z., Chai X. L., Tian Y., Shi G. Y. Anal. Chem., 2013, 85: 418.

[4]

Wang C. Y., Wong K. M. Inorg. Chem, 2013, 52: 13432.

[5]

Wang M. L., Meng G. W., Huang Q., Qian Y. W. Environ. Sci. Technol., 2012, 46: 367.

[6]

Lin Y., Lin W. Y., Chen B., Xie Y. A. Org. Lett., 2012, 14: 432.

[7]

Fan J. L., Zhan P., Hu M. M. Org. Lett., 2013, 12: 492.

[8]

Waggoner D. J., Bart T. B., Gitlin J. D. Neurobiol. Dis., 1999, 6: 221.

[9]

Vulpe C., Levinson B., Whitney S. P., Gitschier J. Nat. Genet., 1993, 3: 7.

[10]

Bull P. C., Thomas G. R., Rommens J. M., Forbes J. R., Cox D. W. Nat. Genet., 1993, 5: 327.

[11]

Valentine J. S., Hart B. G., Winkler J. R. Proc. Natl. Acad. Sci. USA, 2008, 130: 6898.

[12]

Han B. X., Wu F. Y. Chem. J. Chinese. Universities, 2013, 34(11): 2483.

[13]

Meloni G., Faller P., Vasak M. J. Biol. Chem., 2007, 282: 16068.

[14]

Wei T. B., Li J. J., Lin Q., Yao H., Guo Y., Bai C. B., Xie Y. Q., Zhang Y. M. Chem. J. Chinese. Universities, 2012, 33(11): 2452.

[15]

Li X. B., Niu Z. G., Chang L. L., Chen M. X., Wang E. J. Chin. Chem. Lett., 2014, 25: 80.

[16]

Aragay G., Pons J., Merkoçi A. Chem. Rev., 2011, 111: 3433.

[17]

Quang D. T., Kim J. S. Chem. Rev., 2010, 110: 6280.

[18]

Formica M., Fusi V., Giorgi L., Micheloni M. Coord. Chem. Rev., 2012, 256: 170.

[19]

Kim H. N., Guo Z., Zhu W., Yoon J., Tian H. Chem. Soc. Rev., 2011, 40: 79.

[20]

Yang Y. M., Zhao Q., Feng W., Li F. Y. Chem. Rev., 2013, 113: 192.

[21]

Vendrell M., Zhai D., Er J. C., Chang Y. T. Chem. Rev., 2012, 112: 4391.

[22]

Jo J. Y., Lee H. Y., Liu W. J., Olasz A., Chen C. H., Lee D. H. J. Am. Chem. Soc., 2012, 134: 16000.

[23]

Wang L. H., Jiang S., Zhang Z. J., Zhang H. Y., Liu Y. Chem. J. Chinese. Universities, 2013, 34(9): 2108.

[24]

Tang L. J., Cai M. J., Huang Z. L., Zhong S. H., Hou Y. J., Bian R. N. Sen. Act. B, 2013, 185: 188.

[25]

Caballero A., Campos P. J., Rodríguez M. A. Tetrahedron, 2013, 69: 4631.

[26]

Chawla H. M., Shukla R., Pandey S. Tetrahedron Lett., 2013, 54: 2063.

[27]

Gupta V. K., Singh A. K., Ganjali M. R., Norouzi P., Faridbod F., Mergu N. Sen. Act. B, 2013, 182: 642.

[28]

Jang Y. K., Nam U. C., Kwon H. L., Hwang I. H., Kim C. Dye Pigm., 2013, 99: 6.

[29]

Ge F., Ye H., Luo J. Z., Wang S., Sun Y. J., Zhao B. X., Miao J. Y. Sen. Act. B, 2013, 181: 215.

[30]

He G. J., Zhao Y. G., He C., Liu Y., Duan C. Y. Inorg. Chem., 2008, 47: 5169.

[31]

Ye W. P., Wang S. X., Meng X. M., Feng Y., Sheng H. T., Shao Z. L., Zhu M. Z., Guo Q. X. Dye Pigm, 2014, 101: 30.

[32]

Wei T. B., Li J. J., Bai C. B., Lin Q., Yao H., Xie Y. Q., Zhang Y. M. Sci. Chi. Chem., 2013, 56: 923.

[33]

Guan J., Zhang P., Wei T. B., Lin Q., Yao H., Zhang Y. M. RSC Adv., 2014, 4: 35797.

[34]

Nevado J. J. B., Pulgarin J. A. M., Laguna M. A. G. Talanta, 2001, 53: 951.

[35]

Zhou Y., Li Z. X., Zang S. Q., Zhu Y. Y., Zhang H. Y., Hou H. W., Mak T. C. W. Org. Lett., 2012, 14: 1214.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/