Oxygen electroreduction on CoSe2 nanoparticles prepared via hydrothermal method in acidic medium

Dongjiang Zhao , Songyan Ma

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 447 -451.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 447 -451. DOI: 10.1007/s40242-015-4401-2
Article

Oxygen electroreduction on CoSe2 nanoparticles prepared via hydrothermal method in acidic medium

Author information +
History +
PDF

Abstract

CoSe2 nanoparticles were synthesized via a facile hydrothermal method, and characterized by means of X-ray diffraction(XRD), scanning electron microscopy(SEM) and transmission electron microscopy(TEM). The synthesized CoSe2 was composed of crystalline orthorhombic phase and displayed a morphology of short and thin nanobelts. The results of the catalyst experiment demonstrate that the CoSe2 nanocrystals show high catalytic activity and methanol tolerance in oxygen reduction reaction(ORR) with an open circuit potential(OCP) of 0.80 V(vs. NHE) in 0.5 mol/L H2SO4 at 25 °C. The transfer process of about 3.7 electrons per oxygen molecule was determined during the reduction process and the transfer coefficient and Tafel slope were 0.50 and 118 mV, respectively, in the potential region of 0.64-0.75 V(vs. NHE). The high catalytic activity might be related to the high crystallization of the CoSe2 powder and the modification of selenium on the cobalt element.

Keywords

Oxygen reduction / Cobalt selenide / Non-noble metal catalyst / Polymer electrolyte membrane fuel cell

Cite this article

Download citation ▾
Dongjiang Zhao, Songyan Ma. Oxygen electroreduction on CoSe2 nanoparticles prepared via hydrothermal method in acidic medium. Chemical Research in Chinese Universities, 2015, 31(3): 447-451 DOI:10.1007/s40242-015-4401-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chung H. S., Chen C. S., Kremer R. A., Boulton J. R., Burdette G. W. Energy Fuels, 1999, 13: 641.

[2]

Xing Z. H., Zhao T. M., Jiang B., Yin M., Si F. Z., Liu C. R., Yang W. S. Chem. Res. Chinese Universities, 2012, 28(6): 1074.

[3]

Sun S. H., Zhang G. X., Geng D. S., Chen Y. G., Li R. Y., Cai M., Sun X. L. Angew. Chem. Int. Ed., 2011, 50: 422.

[4]

Xu W. L., Zhou X. C., Liu C. P., Xing W., Lu T. H. Electrochem. Commun., 2007, 9: 1002.

[5]

Guo J. W., Zhao T. S., Prabhuram J., Wong C. W. Electrochim. Acta, 2005, 50: 1973.

[6]

Higgins D. C., Wu J., Li W., Chen Z. Electrochim. Acta, 2012, 59: 8.

[7]

Shao Y. Y., Zhang S., Wang C. M., Nie Z. M., Liu J., Wang Y., Lin Y. H. J. Power Sources, 2010, 195: 4600.

[8]

Wang J. J., Chen Y. G., Liu H., Li R. Y., Sun X. L. Electrochem. Commun., 2010, 12: 219.

[9]

Wen Z. H., Liu J., Li J. H. Adv. Mater., 2008, 20: 743.

[10]

Huo R., Jiang W. J., Xu S., Zhang F., Hu J. S. Nanoscale, 2014, 6: 203.

[11]

Wei Z. D., Chan S. H., Li L. L., Cai H. F., Xia Z. T., Sun C. X. Electrochim. Acta, 2005, 50: 2279.

[12]

Suárez-Alcántara K., Rodríguez-Castellanos A., Durón-Torres S., Solorza-Feria O. J. Power Sources, 2007, 171: 381.

[13]

Wang S., Yu D., Dai L. J. Am. Chem. Soc., 2011, 133: 5182.

[14]

Ci S. Q., Wu Y. M., Zou J. P., Tang L. H., Luo S. L., Li J. H., Wen Z. H. Chin. Sci. Bull., 2012, 57: 3065.

[15]

Zhang L., Zhang J., Wilkinson D. P., Wang H. J. Power Sources, 2006, 156: 171.

[16]

Li Z., Ji S., Pollet B. G., Shen P. K. Chem. Commun., 2014, 50: 566.

[17]

Hu Q. P., Pan J., Zhuang L., Lu J. T. Chem. J. Chinese Universities, 2013, 34(1): 170.

[18]

Li J., Wang X. B., Yang J., Yang X. Y., Wan L. Chem. J. Chinese Universities, 2013, 34(4): 800.

[19]

Alonso-Vante N., Bogdanoff P., Tributsch H. J. Catal., 2000, 190: 240.

[20]

Susac D., Sode A., Zhu L., Wong P. C., Teo M., Bizzotto D., Mitchell K. A. R., Parsons R. R., Campbell S. A. J. Phys. Chem. B, 2006, 110: 10762.

[21]

Feng Y., He T., Alonso-Vante N. Chem. Mat., 2008, 20: 26.

[22]

Zhu L., Susac D., Teo M., Wong K. C., Wong P. C., Parsons R. R., Bizzotto D., Mitchell K. A. R., Campbell S. A. J. Catal., 2008, 258: 235.

[23]

Vayner E., Sidik R. A., Anderson A. B., Popov B. N. J. Phys. Chem. C, 2007, 111: 10508.

[24]

Li H., Gao D., Cheng X. Electrochim. Acta, 2014, 138: 232.

[25]

Zhao D., Zhang S., Yin G., Du C., Wang Z., Wei J. J. Power Sources, 2012, 206: 103.

[26]

Sidik R. A., Anderson A. B. J. Phys. Chem. B, 2005, 110: 936.

[27]

Feng Y. J., He T., Alonso-Vante N. Fuel Cells, 2010, 10: 77.

[28]

Lee K., Zhang L., Zhang J. Electrochem. Commun., 2007, 9: 1704.

[29]

Zhang W., Yang Z., Liu J., Hui Z., Yu W., Qian Y., Zhou G., Yang L. Mater. Res. Bull., 2000, 35: 2403.

[30]

Bron M., Bogdanoff P., Fiechter S., Dorbandt I., Hilgendorff M., Schulenburg H., Tributsch H. J. Electroanal. Chem., 2001, 500: 510.

[31]

Suárez-Alcántara K., Rodríguez-Castellanos A., Dante R., Solorza-Feria O. J. Power Sources, 2006, 157: 114.

[32]

Feng Y., He T., Alonso-Vante N. Electrochim. Acta, 2009, 54: 5252.

[33]

Zhang S., Shao Y. Y., Yin G. P., Lin Y. H. J. Mater. Chem., 2010, 20: 2826.

[34]

Hsueh K. L., Chin D. T., Srinivasan S. J. Electroanal. Chem., 1983, 153: 79.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/