An efficient and green approach to synthesizing enamines by intermolecular hydroamination of activated alkynes

Ruijie Zeng , Hongting Sheng , Bo Rao , Yan Feng , Hao Wang , Yehua Sun , Man Chen , Manzhou Zhu

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (2) : 212 -217.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (2) : 212 -217. DOI: 10.1007/s40242-015-4388-8
Article

An efficient and green approach to synthesizing enamines by intermolecular hydroamination of activated alkynes

Author information +
History +
PDF

Abstract

An efficient, atom-economic and green approach to synthesizing enamines was developed by intermolecular hydroamination of activated alkynes with high yields under catalyst- and solvent-free conditions. β-Dimethylamino-acrylate derivatives were also obtained with high yields. In the synthetic process of the derivatives, N,N-dimethylformamide(DMF) pretreated with metal Na, was used as reactant instead of dimethylamine gas. The proposed synthetic method can be used for the synthesis of (E)-ethyl-3-(dimethylamino)acrylate(3cl), and provide a new possible way to the synthesis of Quinolones.

Keywords

Enamine / Hydroamination / Activated alkyne / Catalyst-free / Solvent-free / N,N-Dimethylformamide

Cite this article

Download citation ▾
Ruijie Zeng, Hongting Sheng, Bo Rao, Yan Feng, Hao Wang, Yehua Sun, Man Chen, Manzhou Zhu. An efficient and green approach to synthesizing enamines by intermolecular hydroamination of activated alkynes. Chemical Research in Chinese Universities, 2015, 31(2): 212-217 DOI:10.1007/s40242-015-4388-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cook A G. Enamines: Synthesis, Structure, and Reactions, 1988 2nd Edition New York: Marcel Dekker Inc. 1.

[2]

Kobayashi S, Ishitani H. Chem. Rev., 1999, 99: 1069.

[3]

Mukherjee S, Yang J W, Hoffmann S, List B. Chem. Rev., 2007, 107: 5471.

[4]

Panda N, Mothkuri R. J. Org. Chem., 2012, 77: 9407.

[5]

Bolshan Y, Batey R A. Angew. Chem. Int. Ed., 2008, 47: 2109.

[6]

Lin S, Yang Z Q, Kwok B H, Koldobskiy M, Crews C M, Danishefsky S J. J. Am. Chem. Soc., 2004, 126: 6347.

[7]

Furstner A, Brehm C, Cancho-Grande Y. Org. Lett., 2001, 3: 3955.

[8]

Sun C, Camp J E, Weinreb S M. Org. Lett., 2006, 8: 1779.

[9]

Volkov A, Tinnis F, Adolfsson H. Org. Lett., 2014, 16: 680.

[10]

Chen Z G, Wang Y J, Liu D E, Liu Y L, Li Y N, Wang D, Ge M. Chem. J. Chinese Universities, 2014, 35(7): 1458.

[11]

Chen Z G, Liu D E, Li W L, Liu Y L. Chem. J. Chinese Universities, 2014, 35(11): 2360.

[12]

Wen H, Wang Y J, Liu D E, Liu Y L, Ge M, Chen Z G. Chin J. Org. Chem., 2014, 34: 916.

[13]

Ji X, Huang H, Wu W, Li X, Jiang H. J. Org. Chem., 2013, 78: 11155.

[14]

Mohri K, Kanie A, Horiguchi Y, Isobe K. Heterocycles, 1999, 51: 2377.

[15]

Nuvole A, Paglietti G. J. Chem. Soc. Perkin, Trans., 1989, 1: 1007.

[16]

Kandeel K A, Vernon J M. J. Chem. Soc. Perkin, Trans., 1987, 1: 2023.

[17]

Khouw C, Dartt C, Labinger J, Davis M. J. Catal., 1994, 149: 195.

[18]

Andrade Z, Carlos K, Alves L M. Curr. Org. Chem., 2005, 9: 195.

[19]

Aparicio S, Alcalde R. Green Chem., 2009, 11: 65.

[20]

Khatik G L, Kumar R, Chakraborti A K. Org. lett., 2006, 8: 2433.

[21]

Liu C, Pan W, Yang Y, Wang K W, Dong D W. Chem. Res. Chinese Universities, 2009, 25(1): 37.

[22]

Jeganathan M, Kanagaraj K, Dhakshinamoorthy A. Tetrahedron Lett., 2014, 55: 2061.

[23]

Giordano M, Iadonisi A. J. Org. Chem., 2014, 79: 213.

[24]

Jia X D, Han S Y, Duan H F, Lin Y J, Cao J G, Liang D P, Wu M C. Chem. Res. Chinese Universities, 2013, 29(1): 82.

[25]

Ziyaei-Halimehjani A, Saidi M R. Tetrahedron Lett., 2008, 49: 1244.

[26]

Sarrafi Y, Sadatshahabi M, Alimohammadi K, Tajbakhsh M. Green Chem., 2011, 13: 2851.

[27]

Choudhary G, Peddinti R K. Green Chem., 2011, 13: 3290.

[28]

Ke Y Y, Li Y J, Jia J H, Sheng W J, Han L, Gao J R. Tetrahedron Lett., 2009, 50: 1389.

[29]

Zhou S, Sanchez-Larios E, Gravel M. J. Org. Chem., 2012, 77: 3576.

[30]

Robertson J M, Jones I W, Kayne K M, Contreras C G, Witter D J, Bates R B, Hall H K Jr. Tetrahedron Lett., 2011, 52: 6080.

[31]

Paczkowski R, Maichle-Mossmer C, Maier M E. Org. Lett., 2000, 2: 3967.

[32]

Tang X, Huang L, Qi C, Wu X, Wu W, Jiang H. Chem. Commun., 2013, 49: 6102.

[33]

Liu X Y, Che C M. Org. Lett., 2009, 11: 4204.

[34]

Waterlot C, Couturier D, Rigo B T. Tetrahedron Lett., 2000, 41: 317.

[35]

Maw G, Thirsk C, Whiting A. Tetrahedron Lett., 2001, 42: 8387.

[36]

Hong C Y, Kim Y K, Chang J H, Kim S H, Choi H, Nam D H, Kim Y Z, Kwak J H. J. Med. Chem., 1997, 40: 3584.

[37]

Chai Y, Wan Z L, Wang B, Guo H Y, Liu M L. Eur. J. Med. Chem., 2009, 44: 4063.

[38]

Chen Y L, Fang K C, Sheu J Y, Hsu S L, Tzeng C C. J. Med. Chem., 2001, 44: 2374.

[39]

Miyauchi R, Kawakami K, Ito M, Matsuhashi N, Ohki H, Inagaki H, Takahashi H, Takemura M. Bioorg. Med. Chem., 2009, 17: 6879.

[40]

Zheng H, Liu J, Zhang P F. Med. Chem. Res., 2012, 21: 53.

[41]

Stern E, Muccioli G G, Bosier B, Hamtiaux L, Millet R, Poupaert J H, Henichart J P, Depreux P, Goossens J F, Lambert D M. J. Med. Chem., 2007, 50: 5471.

[42]

Lui N, Panskus H, Müller H. Process for Preparing Quinolone- and Naphthyridone-Carboxylic Acids and Esters Thereof, 2001.

[43]

Ireland R E, Brown F R. J. Org. Chem., 1980, 45: 1868.

[44]

Gupton J T, Lizzi M J, Polk D. Synthetic Commun., 1982, 12: 939.

[45]

Lee K Y, Lee C G, Na J E, Kim J N. Tetrahedron Lett., 2005, 46: 69.

[46]

Sharma A, Mehta V P, van der Eycken E. Tetrahedron, 2008, 64: 2605.

[47]

Li Y, Xie Y, Zhang R, Jin K, Wang X, Duan C. J. Org. Chem., 2011, 76: 5444.

[48]

Wang J, Hou J T, Wen J, Zhang J, Yu X Q. Chem. Commun., 2011, 47: 3652.

[49]

Ding S, Jiao N. Angew. Chem. Int. Ed., 2012, 51: 9226.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/