Structures and nonlinear optical properties of lithium-adsorbed polycyclic π-conjugated pentacene systems

Shaochen Li , Guangtao Yu , Wei Chen , Xuri Huang

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (2) : 261 -269.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (2) : 261 -269. DOI: 10.1007/s40242-015-4375-0
Article

Structures and nonlinear optical properties of lithium-adsorbed polycyclic π-conjugated pentacene systems

Author information +
History +
PDF

Abstract

Structures and nonlinear optical(NLO) properties of eleven new Li n-P m(n=1–5) species were investigated in detail with the help of ab initio computation, in which one to the maximum five Li atoms are doped over the polycyclic π-conjugated pentacene. These Li-doped pentacene systems exhibit large adsorption energies(ca. 107.0–141.3 kJ/mol) and considerable first hyperpolarizabilities(even up to 4.1×104 a.u.), where the number of Li atoms, the doping site, and the distance between the neighboring Li atoms have important impacts on the β 0 value. In the doped pentacene systems with less Li atoms(one or two), the improvement of β 0 value can be attributed to the simple transfer of the charge from Li atom to pentacene. Differently, doped more Li atoms(three to five) can cause not only charge transfer but also excess electron, and this cooperation can endow the doped systems with the much larger first hyperpolarizabilities. These fascinating findings are advantageous for the design of new NLO materials based on the intriguing polycyclic π-conjugated systems.

Keywords

Alkali atom / Pentacene / The first hyperpolarizability / Charge transfer / Excess electron

Cite this article

Download citation ▾
Shaochen Li, Guangtao Yu, Wei Chen, Xuri Huang. Structures and nonlinear optical properties of lithium-adsorbed polycyclic π-conjugated pentacene systems. Chemical Research in Chinese Universities, 2015, 31(2): 261-269 DOI:10.1007/s40242-015-4375-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Heck J, Dabek S, Meyer-Friedrichesn T, Wong H. Coord. Chem. Rev., 1999, 190–192: 1217.

[2]

Kanis D R, Ratner M A, Marks T. Chem. Rev., 1994, 94: 195.

[3]

Meyers F, Marder S R, Pierce B M, Bredas J L. J. Am. Chem. Soc., 1994, 116: 10703.

[4]

Ma N N, Liu C G, Qiu Y Q, Sun S L, Su Z M. J. Comput. Chem., 2012, 33: 211.

[5]

LeCours S M, Guan H W, DiMagno S G, Wang C H, Therien M J. J. Am. Chem. Soc., 1996, 118: 1497.

[6]

Priyadarshy S, Therien M J, Beratan D N. J. Am. Chem. Soc., 1996, 118: 1504.

[7]

De la Torre G, Vaquez P, Agullo-Lopez F, Torres T. Chem. Rev., 2004, 104: 3723.

[8]

Liu C G, Guan W, Song P, Yan L K, Su Z M. Inorg. Chem., 2009, 48: 6548.

[9]

Zhang T G, Zhao Y, Asselberghs I, Persoons A, Clays K, Therien M T. J. Am. Chem. Soc., 2005, 127: 9710.

[10]

Tancrez N, Feuvrie C, Ledoux I, Zyss J, Toupet L, Bozec H L, Maury O. J. Am. Chem. Soc., 2005, 127: 13474.

[11]

Cornelis D, Franz E, Asselberghs I, Clays K, Verbiest T, Koeckelberghs G. J. Am. Chem. Soc., 2011, 133: 1317.

[12]

Maury O, Viau L, Senechal K, Corre B, Guegan J P, Renouard T, Ledoux I, Zyss J, Bozec L H. Chem. Eur. J., 2004, 10: 4454.

[13]

Lee S H, Park J R, Jeong M Y, Kim H M, Li S J, Song J, Ham S, Jeon S J, Cho B R. Chem. Phys. Chem., 2006, 7: 206.

[14]

Zhou Z J, Yu G T, Ma F, Huang X R, Wu Z J, Li Z R. J. Mater. Chem. C, 2014, 2: 306.

[15]

Yu G T, Zhao X G, Niu M, Huang X R, Zhang H, Chen W. J. Mater. Chem. C, 2013, 1: 3833.

[16]

Chen L W, Yu G T, Chen W, Tu C Y, Zhao X G, Huang X R. Phys. Chem. Chem. Phys., 2014, 16: 10933.

[17]

Tu C Y, Yu G T, Yang G H, Zhao X G, Chen W, Li S C, Huang X R. Phys. Chem. Chem. Phys., 2014, 16: 1597.

[18]

Chen W, Li Z R, Wu D, Li Y, Sun C C, Gu F L. J. Am. Chem. Soc., 2005, 127: 10977.

[19]

Xu H L, Li Z R, Wu D, Wang B Q, Li R Y, Gu F L, Aoki Y. J. Am. Chem. Soc., 2007, 129: 2967.

[20]

Chen W, Li Z R, Wu D, Li Y, Sun C C. J. Phys. Chem. B, 2005, 109: 601.

[21]

Muhammad S, Xu H L, Liao Y, Kan Y H, Su Z M. J. Am. Chem. Soc., 2009, 131: 11833.

[22]

Yu G T, Huang X R, Chen W, Sun C C. J. Comput. Chem., 2011, 32: 2005.

[23]

Zhou Z J, Li H, Huang X R, Wu Z J, Ma F, Li Z R. Comput. Theor. Chem., 2013, 1023: 99.

[24]

Niu M, Yu G T, Yang G H, Chen W, Zhao X G, Huang X R. Inorg. Chem., 2014, 53: 349.

[25]

Zhao X G, Yu G T, Huang X R, Chen W, Niu M. J. Mol. Model., 2013, 19: 5601.

[26]

Chen W, Yu G T, Jin P, Li Z R, Huang X R. J. Comput. Theor. Nanosci., 2011, 8: 2482.

[27]

Li S C, Yu G T, Chen W, Huang X R. Chem. J. Chinese Universities, 2014, 35(11): 2390.

[28]

Pramanik G, Miller P. Molecules., 2012, 17: 4625.

[29]

Mondal R, Tönshoff C, Khon D, Neckers D C, Bettinger H F. J. Am. Chem. Soc., 2009, 131: 14281.

[30]

Sakamoto Y, Suzuki T, Kobayashi M, Gao Y, Fukai Y, Inoue Y, Sato F, Tokito S. J. Am. Chem. Soc., 2004, 126: 8138.

[31]

Kleemann H, Schunemann C, Zakhidov A, Lussem B, Leo K. Org. Electron., 2012, 13: 58.

[32]

Wakatsuki Y, Noda K, Wada Y, Toyabe T. J. Appl. Phys., 2011, 110: 054505.

[33]

Brinkmann M, Graff S, Straupe C, Wittmann J C, Chaumont C, Neusch F, Aziz A, Schaer M, Zuppiroli L. J. Phys. Chem. B, 2003, 107: 10531.

[34]

Smerdon J A, Bode M, Guisinger N P, Guest J R. Phys. Rev. B, 2011, 84: 1.

[35]

Katsuta S, Miyagi D, Yamada H, Okujima T, Mori S, Nakayama K, Uno H. Org. Lett., 2011, 13: 1454.

[36]

Sheraw C D, Jackson T N, Eaton D L, Anthony J E. Adv. Mater., 2003, 15: 2009.

[37]

Yakuphanoglu F, Gunduz B. Synthetic. Metals, 2012, 162: 1210.

[38]

Chai S, Wen S H, Huang J D, Han K L. J. Comput. Chem., 2011, 32: 3218.

[39]

Girlando A, Grisanti L, Masino M, Brillante A, Della Valle R G, Venuti E. J. Chem. Phys., 2011, 135: 084701.

[40]

Zimmerman P M, Bell F, Casanova D, Head-Gordon M. J. Am. Chem. Soc., 2011, 133: 19944.

[41]

Zubarev D Yu, Robertson N, Domin D, McClean J, Wang J H, Lester W A, Whitesides R, You X Q, Frenklach M. J. Phys. Chem. C, 2010, 114: 5429.

[42]

You X Q, Zubarev D Y, Lester W A Jr., Frenklach M. J. Phys. Chem. A, 2011, 115: 14184.

[43]

Mete E, Demiroğlu I, Danişman M F, Ellialtioğlu J. Phys. Chem. C, 2010, 114: 2724.

[44]

Yang G C, Fang L, Tan K, Shi S Q, Su Z M, Wang R S. Organometallics, 2007, 26: 2082.

[45]

Sun S L, Qin C S, Qiu Y Q, Yang G C, Su Z M. J. Organomet. Chem., 2009, 694: 1266.

[46]

Buckingham A D. Adv. Chem. Phys., 1967, 12: 107.

[47]

Mclean A D, Yoshimine M. J. Chem. Phys., 1967, 47: 1927.

[48]

Wei W, Bai F Q, Xia B H, Chen H B, Zhang H X. Chem. Res. Chinese Universities, 2013, 29(5): 962.

[49]

Zhang S S, Shi L L, Su Z M, Ceng Y, Zhao L. Chem. Res. Chinese Universities, 2013, 29(2): 361.

[50]

Wang F F, Li Z R, Wu D, Wang B Q, Li Y, Li Z J, Chen W, Yu G T, Gu F L, Aoki Y. J. Phys. Chem. B, 2008, 112: 1090.

[51]

Xu H L, Sun S L, Muhammad S, Su Z M. Theor. Chem. Acc., 2011, 128: 241.

[52]

Maroulis G. Struct. Bond., 2012, 149: 95.

[53]

Ma F, Li Z R, Zhou Z J, Wu D, Li Y, Wang Y F, Li Z S. J. Phys. Chem. C, 2010, 114: 11242.

[54]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A Jr., Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, AlLaham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 03, Revision D.02, 2004, Wallingford CT: Gaussian Inc.

[55]

Oudar J L. J. Chem. Phys., 1977, 67: 446.

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/