Electrochemical performance of LiMn2O4/LiFePO4 blend cathodes for lithium ion batteries

Chengguang Qiu , Lina Liu , Fei Du , Xu Yang , Chunzhong Wang , Gang Chen , Yingjin Wei

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (2) : 270 -275.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (2) : 270 -275. DOI: 10.1007/s40242-015-4367-0
Article

Electrochemical performance of LiMn2O4/LiFePO4 blend cathodes for lithium ion batteries

Author information +
History +
PDF

Abstract

A series of LiMn2O4/LiFePO4 blend cathodes was prepared by hand milling and ball milling in order to compensate the disadvantage of spinel LiMn2O4 and olivine LiFePO4. The morphologies of the blends were studied by scanning electron microscopy, and their electrochemical properties were studied by charge-discharge cycling, cyclic voltammetry and electrochemical impedance spectroscopy. It is easy to obtain uniform LiMn2O4/LiFePO4 blends by the hand milling technique, while significant particle agglomeration is caused by the ball milling technique. When the LiMn2O4:LiFePO4 mass ratio is 1:1, the nano-sized LiFePO4 powders not only uniformly cover the micron-sized LiMn2O4 particles but also effectively fill in the cavities of the LiMn2O4 space. Such morphology offers a good electrical contact and a high tap density, which leads to a high discharge capacity and good cycle stability.

Keywords

Lithium ion battery / LiMn2O4 / LiFePO4 / Blend cathode

Cite this article

Download citation ▾
Chengguang Qiu, Lina Liu, Fei Du, Xu Yang, Chunzhong Wang, Gang Chen, Yingjin Wei. Electrochemical performance of LiMn2O4/LiFePO4 blend cathodes for lithium ion batteries. Chemical Research in Chinese Universities, 2015, 31(2): 270-275 DOI:10.1007/s40242-015-4367-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tu J, Zhao X B, Cao G S, Zhuang D G, Zhu T J, Tu J P. Eletrochim. Acta, 2006, 51: 6456.

[2]

Yu L, Qiu X, Xi J, Zhu W, Chen L. Eletrochim. Acta, 2006, 51: 6406.

[3]

Liu H, Cheng C, Zong Q, Zhang K. Mater. Chem. Phys., 2007, 101: 276.

[4]

Ha H W, Yun N J, Kim K. Electrochim. Acta, 2007, 52: 3236.

[5]

Wohlfahrt-Mehrens M, Butz A, Oesten R, Huggins R A. Proc. Electrochem. Soc., 1997, 18: 92.

[6]

Deng B H, Nakamur H, Yoshio M. Chemistry Letters, 2003, 32: 10.

[7]

Hosoya M, Ikuta H, Wakihara M. Solid State Ionics, 1998, 111: 153.

[8]

Sun Y K, Kim D W, Choi Y M. J. Power Sources, 1999, 79: 231.

[9]

Padhi A K, Nanjundaswamy K S, Masquelier C, Okada S, Goodenough J B. J. Electrochem. Soc., 1997, 144: 1609.

[10]

Zhang S S, Xu K, Jow T R. J. Power Sources, 2006, 159: 702.

[11]

Padhi K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997, 144: 1188.

[12]

Shin H C, Cho W, Jang H. Electrochim. Acta, 2006, 52: 1472.

[13]

Ma Z F, Yang X Q, Liao X Z, Sun X, McBreen J. Electrochem. Commun., 2001, 3: 425.

[14]

Tran H Y, Täubert C, Fleischhammer M, Axmann P, Küppers L, Wahlfahrt-Mehrens M. J. Electrochem. Soc., 2011, 158: A556.

[15]

Jeonga S K, Shina J S, Nahma K S, Kumarb T P, Stephanb A M. Mater. Chem. Phys., 2008, 111: 213.

[16]

Wang S J, Zhao Y J, Zhao C S, Xia D G. Chem. J. Chinese Universities, 2009, 30(12): 2358.

[17]

Lu J B, Tang Z L, Le B, Zhang Z T, Shen W C. Chem. J. Chinese Universities, 2005, 26(11): 2093.

[18]

Barker J, Saudi M, Yazid K, Tracy E. Electrodes Comprising Mixed Active Particles, 2006.

[19]

Xiang J Y, Tu J P, Zhang L, Wang X L, Zhou Y, Qiao Y Q, Lu Y. J. Power Sources, 2010, 195: 8331.

[20]

Gallagher K G, Kang S H, Park S U, Han S Y. J. Power Sources, 2011, 196: 9702.

[21]

Jamnik J. Solid State Ionics, 2003, 157: 19.

[22]

Park O K, Cho Y, Lee S, Yoo H C, Song H K, Cho J. Energy Environ. Sci., 2011, 4: 1621.

[23]

Jin B, Gu H B, Zhang W X, Park K H, Sun G P. J. Solid State Electrochem., 2008, 12: 1549.

[24]

Yuan G, Reimers J N, Dahn J R. Phys. Rev. B, 1996, 54: 3878.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/