Evaluation of oil yield of oil shale by infrared spectrometry coupled with ultrasound-assisted extraction

Zhenying Zhao , Jun Lin , Yong Yu , Chuanbin Hou , Yuyang Sun

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 352 -356.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 352 -356. DOI: 10.1007/s40242-015-4364-3
Article

Evaluation of oil yield of oil shale by infrared spectrometry coupled with ultrasound-assisted extraction

Author information +
History +
PDF

Abstract

The oil yield of oil shale was evaluated by Fourier transform infrared(FTIR) spectrometry coupled with ultrasound-assisted extraction. The extraction conditions, including the amount of sample, extraction time and extraction temperature, were examined and optimized. Twenty-four oil shale samples were collected and divided into calibration set and prediction set randomly with a ratio of 2:1. The oil yields of all the samples were determined by the routine method(low-temperature retorting) for reference. The linear regression(LR) equations of oil yield vs. the total area of the spectrum peaks in a wavenumber range of 3100–2800 cm–1 as well as the sum of absorbance of three absorption peaks(2855, 2927 and 2955 cm–1), and the multiple linear regression(MLR) model of oil yield vs. the absorbances of the three absorption peaks were constructed with the samples in calibration set and applied to the evaluation of the oil yields of the samples in prediction set, respectively. The results show that the MLR model provides more accurate predictions than the other LR two equations. The determination coefficient(Rp 2), the root-mean-square error of prediction(RMSEP) and the residual prediction deviation(RPD) of the MLR model are 0.9616, 0.6458 and 3.6, respectively. The present method is a rapid and effective alternative to the routine low-temperature retorting method.

Keywords

Oil shale / Oil yield / Ultrasound-assisted extraction / Infrared spectroscopy / Multiple linear regression

Cite this article

Download citation ▾
Zhenying Zhao, Jun Lin, Yong Yu, Chuanbin Hou, Yuyang Sun. Evaluation of oil yield of oil shale by infrared spectrometry coupled with ultrasound-assisted extraction. Chemical Research in Chinese Universities, 2015, 31(3): 352-356 DOI:10.1007/s40242-015-4364-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rattien S., Eaton D. Energy, 1976, 1: 183.

[2]

Liu Z. J., Dong Q. S., Ye S. Q., Zhu J. W., Guo W., Li D. C., Liu R., Zhang H. L., Du J. F. Journal of Jilin University(Earth Science Edition), 2006, 36: 871.

[3]

Altun N. E., Hiçyilmaz C., Hwang J. Y., Bagci A. S., Kök M. V. Oil Shale, 2006, 23: 216.

[4]

Taciuk W., Eng P. Oil Shale, 2013, 30: 3.

[5]

Wang S., Jiang X. M., Han X. X., Tong J. H. Energy, 2012, 42: 224.

[6]

Han X. X., Kulaots I., Jiang X. M., Suuberg E. M. Fuel, 2014, 126: 143.

[7]

The Nigerian Economic Summit Group. NESG Policy Paper, 2013.

[8]

Bai Y. L., Tang H., Yan K. Oil Shale, 2011, 28: 380.

[9]

Dong Q. S., Wang L. X., Yu W. B., Liu Z. J., Zhang H. L., Hou G. F. Journal of Jilin University (Earth Science Edition), 2006, 36: 900.

[10]

SH/T 0508-92, The Determination Method of Oil Yield in Oil Shale-Low Temperature Retorting, Petroleum and Chemical Industry Standard of the People’s Republic of China, 1992

[11]

Na J. G., Im C. H., Chung S. H., Lee K. B. Fuel, 2012, 95: 132.

[12]

Sun P. C., Liu Z. J., Grataer R., Xu Y. B., Liu R., Li B. Y., Meng Q. T., Xu J. J. Oil Shale, 2013, 30: 402.

[13]

Wang Z. H., Liu J., Chen X. C., Sun Y. Y., Lin J. Spectrosc. Spect. Anal., 2012, 32: 2770.

[14]

Adams M. J., Awaja F., Bhargava S., Grocott S., Romeo M. Fuel, 2005, 84: 1986.

[15]

Zhao Z. Y., Lin J., Zhang H. Z. Spectrosc. Spect. Anal., 2014, 34: 1707.

[16]

Chu X. L. Molecular Spectroscopy Analytical Technology Combined with Chemometrics and Its Applications, 2011, Beijing: Chemical Industry Press 160.

[17]

Wu N., Sun K. L., Liu Y., Yang X. F., Li H. Chem. Res. Chinese Universiteis, 2013, 29(4): 759.

[18]

Chen X. L., Deng L. H., Wang X. F., Guan S. Chem. J. Chinese Universiteis, 2014, 35(12): 2510.

[19]

McKelvy M. L., Britt T. R., Davis B. L., Gillie J. K., Graves F. B., Lentz L. A. Anal. Chem., 1998, 70: 119.

[20]

Zhang H. Q. Instrumental Analysis, 2013, Beijing: Higher Education Press 139.

[21]

Janik L. J., Forrester S. T., Rawson A. Chemom. Intell. Lab. Syst., 2009, 97: 185.

[22]

Department of Environmental Protection. HJ 637-2012, Water Quality-Determination of Petroleum Oils and Animal and Vegetable Oils-Infrared Spectrophotometry, 2012, Beijing: China Environmental Science Press.

[23]

Ramsey E. D., Sun Q. B., Zhang Z. Q., Guo W., Liu J. Y., Wu X. H. J. Environ. Sci., 2010, 22: 1462.

[24]

Soriano-Disla J. M., Janik L. J., Rossel R. A. V., Macdonald L. M., McLaughlin L. M. Appl. Spectrosc. Rev., 2013, 49: 142.

[25]

Forrester S. T., Janik L. J., McLaughlin M. J. Soil Chem., 2013, 77: 453.

[26]

Li Q.Y., Han X. X., Liu Q. Q., Jiang X. M. Fuel, 2014, 121: 111.

[27]

Li J. Shanxi Electric Power, 2003, 5: 18.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/