Theoretical studies on the absorption spectra and intramolecular charge transfer of push-pull zinc porphyrin dyes for dye-sensitized solar cells

Hongqiang Xia , Jian Wang , Ran Jia , Qin Wang , Hongxing Zhang

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (2) : 276 -280.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (2) : 276 -280. DOI: 10.1007/s40242-015-4342-9
Article

Theoretical studies on the absorption spectra and intramolecular charge transfer of push-pull zinc porphyrin dyes for dye-sensitized solar cells

Author information +
History +
PDF

Abstract

The electronic structures, absorption spectra and intramolecular charge transfer properties of five push-pull zinc porphyrin analogs with different donor group and π bridge have been investigated by density functional theory(DFT) and TD(time-dependent)-DFT approach. The results show that the asymmetrical substituted diphenylamine group is favorable to the Q-band absorption of porphyrin dyes. The absence of the acetylenic bond in the π bridge part leads to the result that the B-band and the Q-band are blue-shifted and their absorption strength become weaker compared with that containing acetylenic bond, respectively. The introduction of the benzothiadiazole into the π bridge improves the intramolecular charge transfer.

Keywords

Dye-sensitized solar cell / Density functional theory / Push-pull zinc porphyrin / Absorption spectrum / Intramolecular charge transfer

Cite this article

Download citation ▾
Hongqiang Xia, Jian Wang, Ran Jia, Qin Wang, Hongxing Zhang. Theoretical studies on the absorption spectra and intramolecular charge transfer of push-pull zinc porphyrin dyes for dye-sensitized solar cells. Chemical Research in Chinese Universities, 2015, 31(2): 276-280 DOI:10.1007/s40242-015-4342-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shah A, Torres P, Tscharner R, Wyrsch N, Keppner H. Science, 1999, 285: 692.

[2]

Hagfeldt A, Boschloo G, Sun L C, Kloo L, Pettersson H. Chem. Rev., 2010, 110: 6595.

[3]

Hernez-Alonso M D, Fresno F, Suarez S, Coronado J M. Energy Environ. Sci., 2009, 2: 1231.

[4]

O’regan B, Grätzel M. Nature, 1991, 353: 24.

[5]

Hagfeldt A, Grätzel M. Acc. Chem. Res., 2000, 33: 269.

[6]

Hara K, Sayama K, Ohga Y, Shinpo A, Suga S, Arakawa H. Chem. Commun., 2001, 569.

[7]

Liang M, Chen J. Chem. Soc. Rev., 2013, 42: 3453.

[8]

Su X, Zhang J, Wu Y, Geng Y, Su Z M. Chem. J. Chinese Universities, 2013, 34(8): 1945.

[9]

Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H. J. Phys. Chem. B, 2003, 107: 597.

[10]

Sayama K, Tsukagoshi S, Hara K, Ohga Y, Shinpou A, Abe Y, Suga S, Arakawa H. J. Phys. Chem. B, 2002, 106: 1363.

[11]

Tokuhisa H, Hammond P T. Adv. Funct. Mater., 2003, 13: 831.

[12]

Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod B F E, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin M K, Grätzel M. Nature Chem., 2014, 6: 242.

[13]

Walter M G, Rudine A B, Wamser C C. J. Porphyrins Phthalocyanines, 2010, 14: 759.

[14]

Yella A, Mai C L, Zakeeruddin S M, Chang S N, Hsieh C H, Yeh C Y, Grätzel M. Angew. Chem. Int. Ed., 2014, 53: 2973.

[15]

Bessho T, Zakeeruddin S M, Yeh C Y, Diau E W G, Grätzel M. Angew. Chem. Int. Ed., 2010, 49: 6646.

[16]

Hsieh C P, Lu H P, Chiu C L, Lee C W, Chuang S H, Mai C L, Yen W N, Hsu S J, Diau E W G, Yeh C Y. J. Mater. Chem., 2010, 20: 1127.

[17]

Chang Y C, Wang C L, Pan T Y, Hong S H, Lan C M, Kuo H H, Lo C F, Hsu H Y, Lin C Y, Diau E W G. Chem. Commun., 2011, 47: 8910.

[18]

Palomaki P K B, Civic M R, Dinolfo P H. Acs Appl. Mater. Inter., 2013, 5: 7604.

[19]

Yella A, Lee H W, Tsao H N, Yi C Y, Chiran A K. Science, 2011, 334: 1203.

[20]

Kurotobi K, Toude Y, Kawamoto K, Fujimori Y, Ito S, Chabera P, Sundstrom V, Imahori H. Chem. Eur. J., 2013, 19: 17075.

[21]

Stillman M, Mack J, Kobayashi N. J. Porphyrins Phthalocyanines, 2002, 6: 296.

[22]

Walsh P J, Gordon K C, Officer D L, Campbell W M. J. Mol. Struct.(Theochem), 2006, 759: 17.

[23]

Earles J C, Gordon K C, Stephenson A W I, Partridge A C, Officer D L. Phys. Chem. Chem. Phys., 2011, 13: 1597.

[24]

Chen J, Wang J, Bai F Q, Zheng Q C, Zhang H X. Chem. Res. Chinese Universities, 2012, 28(4): 696.

[25]

Chen J, Wang M. Chem. Res. Chinese Universities, 2013, 29(3): 584.

[26]

Le Bahers T, Bremond E, Ciofini I, Adamo C. Phys. Chem. Chem. Phys., 2014, 16: 14435.

[27]

Le Bahers T, Adamo C, Ciofini I. J. Chem. Theory Comput., 2011, 7: 2498.

[28]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A Gaussian 09, 2009, Wallingford CT: Gaussian Inc.

[29]

Becke A D. J. Chem. Phys., 1993, 98: 5648.

[30]

Casida M E, Jamorski C, Casida K C, Salahub D R. J. Chem. Phys., 1998, 108: 4439.

[31]

Stratmann R E, Scuseria G E. J. Chem. Phys., 1998, 109: 8218.

[32]

Matsuzawa N N, Ishitani A, Dixon D A, Uda T. J. Phys. Chem. A, 2001, 105: 4953.

[33]

Cossi M, Barone V, Cammi R, Tomasi J. Chem. Phys. Lett., 1996, 255: 327.

[34]

Tomasi J, Mennucci B, Cammi R. Chem. Rev., 2005, 105: 2999.

[35]

Lu T, Chen F. J. Comput. Chem., 2012, 33: 580.

[36]

Le Bahers T, Pauporte T, Laine P P, Labat F, Adamo C, Ciofini I. Journal of Physical Chemistry Letters, 2013, 4: 1044.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/