Structural and transport characteristics of UCl3 in molten LiCl-KCl mixture: a molecular dynamics simulation study

Tao Jiang , Ning Wang , Shuming Peng , Liuming Yan

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (2) : 281 -287.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (2) : 281 -287. DOI: 10.1007/s40242-015-4331-z
Article

Structural and transport characteristics of UCl3 in molten LiCl-KCl mixture: a molecular dynamics simulation study

Author information +
History +
PDF

Abstract

To obtain suitable data for the pyrometallurgical post-processing in the fusion-fission hybrid reactor, the structure and transport characteristics of molten LiCl-KCl mixture containing UCl3 were studied by molecular dynamics simulation. The radial distribution functions, densities, and self-diffusion coefficients were investigated at various molar fractions of UCl3. In the molten LiCl-KCl-UCl3 salt mixture, the first peak for g U-Cl(r) was located at 0.266 nm, which was slightly left-shifted than the X-ray diffraction data, i.e., 0.285 nm for pure molten UCl3. The preexponential factors for U3+ decreased from 46.2×10−5 cm2/s to 32.2×10−5 cm2/s as the molar fraction of U3+ increased from 0.005 to 0.05.

Keywords

Molten salt / Uranium trichloride / Molecular dynamics simulation / Diffusion coefficient

Cite this article

Download citation ▾
Tao Jiang, Ning Wang, Shuming Peng, Liuming Yan. Structural and transport characteristics of UCl3 in molten LiCl-KCl mixture: a molecular dynamics simulation study. Chemical Research in Chinese Universities, 2015, 31(2): 281-287 DOI:10.1007/s40242-015-4331-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu M. Annual Report of China Institute of Atomic Energy, 2006, 3.

[2]

Liu X G, Xu J M, Liang J F, Zhu Y J. Science & Technology Review, 2006, 24(7): 77.

[3]

Liu X G. J. Nucl. Radiochem., 2009, 31(Suppl.): 36.

[4]

Yu G L, Wang K. Nucl. Power Eng., 2010, 31(S2): 116.

[5]

Fukasawa K, Uehara A, Nagai T, Sato N, Fujii T, Yamana H. J. Nucl. Mater., 2012, 424(1–3): 17.

[6]

Salanne M, Simon C, Turq P, Madden P A. J. Phys. Chem. B, 2008, 112(4): 1177.

[7]

Ghosh S, Prabhakara Reddy B, Nagarajan K, Hari Kumar K C. Calphad., 2014, 45: 11.

[8]

Roy J J, Grantham L F, Grimmett D L, Fusselman S P, Krueger C L, Storvick T S, Inoue T, Sakamura Y, Takahashi N. J. Electrochem. Soc., 1996, 143(8): 2487.

[9]

Sangster M J L, Dixon M. Adv. Phys., 1976, 25(1): 247.

[10]

Okamoto Y, Madden P A, Minato K. J. Nucl. Mater., 2005, 344(1–3): 109.

[11]

Okamoto Y, Kobayashi F, Ogawa T. J. Alloy Compd., 1998, 271–273: 355.

[12]

Okamoto Y, Madden P A. J. Phys. Chem. Solids, 2005, 66(2–4): 448.

[13]

Okamoto Y, Kobayashi F, Ogawa T. J. Nucl. Mater., 1997, 247: 86.

[14]

Abramo M C, Caccamo C. J. Phys.: Condens. Matter, 1994, 6(24): 4405.

[15]

Ribeiro M C C. J. Phys. Chem. B, 2003, 107(18): 4392.

[16]

Chakraborty B, Wang J, Eapen J. Phys. Rev. E, 2013, 87: 052312.

[17]

Morgan B, Madden P A. J. Chem. Phys., 2004, 120(3): 1402.

[18]

Lantelme F, Turq P. J. Chem. Phys., 1982, 77(6): 3177.

[19]

Okamoto Y, Yaita T, Shiwaku H, Suzuki S, Madden P A, Usami N, Kobayashi K. Photon Factory Activity Report 2005 #23 Part B: Chemistry, 2006, 13.

[20]

Rollet A L, Salanne M. Annu. Rep. Prog. Chem., Sect. C, 2011, 107: 88.

[21]

Yan L M, Zhu S H. Theory and Practice of Molecular Dynamic Simulation, 2013, Beijing: Science Press 56.

[22]

Hutchinson F, Wilson M, Madden P A. Mol. Phys., 2001, 99(10): 811.

[23]

Salanne M, Madden P A. Mol. Phys., 2011, 109(19): 2299.

[24]

Larsen B, Førland T, Singer K. Mol. Phys., 1973, 26(6): 1521.

[25]

Smith W, Leslie M, Forester T R. Computer Code DL_Poly_2.14, 2003, Daresbury: CCLRC, Daresbury Laboratory.

[26]

Nosé S. J. Chem. Phys., 1984, 81(1): 511.

[27]

Hoover W G. Phys. Rev. A, 1985, 31(3): 1695.

[28]

Verlet L. Physical Review Online Archive(Prola), 1967, 159: 98.

[29]

Basin A S, Kaplun A B, Meshalkin A B, Uvarov N F. Russ. J. Inorg. Chem., 2008, 53(9): 1611.

[30]

Van Artsdalen E R, Yaffe I S. J. Phys. Chem., 1955, 59(2): 118.

[31]

Janz G J, Allen C B, Bansal N P, Murphy R M, Tomkins R P T. Physical Properties Data Compilations Relevant to Energy Storage, II. Molten Salts: Data on Single and Multi-component Salt Systems, 1979.

[32]

Adya A. K., Matsuura H., Takagi R., Rycerz L., Eds.: Trulove P. C., Long H. C. D., Stafford G. R., Deki S., Proceedings of the 12th International Symposium on Molten Salts, The Electrochemical Society, Honolulu, 1999

[33]

Mariani R D, Vaden D. J. Nucl. Mater., 2010, 404(1): 25.

AI Summary AI Mindmap
PDF

248

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/