Low temperature molten salt synthesis of perovskite-type ACeO3(A=Sr, Ba) in eutectic NaCl-KCl

Ming Liu , Lei Hu , Pengfei Xu , Kun Zhao , Lingbo Zong , Ranbo Yu , Jun Chen , Xianran Xing

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 342 -346.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 342 -346. DOI: 10.1007/s40242-015-4330-0
Article

Low temperature molten salt synthesis of perovskite-type ACeO3(A=Sr, Ba) in eutectic NaCl-KCl

Author information +
History +
PDF

Abstract

A molten salt method was developed for the synthesis of ACeO3(A=Sr, Ba) with perovskite structure at 750 °C(SrCeO3) and 850 °C(BaCeO3) in the eutectic NaCl-KCl. The synthetic temperature was much lower than that of the conventional method(generally>1000 °C). The structure and morphology of the product were characterized by means of X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM) and transmission electron microscopy(TEM). The results show that the synthesized octahedral SrCeO3 crystallizes in the orthorhombic system with the unit cell parameters of a=0.85855 nm, b=0.61523 nm, c=0.60059 nm, and the synthesized cuboid BaCeO3 crystallizes in the cubic system with the unit cell parameter of a=0.43962 nm. The result of X-ray photoelectron spectroscopy(XPS) analysis indicates that both Ce4+ and Ce3+ exist in the two structures, and the Ce4+/Ce3+ peak area ratios for SrCeO3 and BaCeO3 are 1.93 and 2.12, respectively. Meanwhile, the adsorbed/lattice oxygen ratios(1.87 for SrCeO3 and 3.04 for BaCeO3) indicate the existence of a lot of oxygen vacancies in the structures of SrCeO3 and BaCeO3, which indicates a far-reaching significance to study the corresponding physicochemistry performance.

Keywords

Molten salt synthesis / Perovskite / SrCeO3 / BaCeO3

Cite this article

Download citation ▾
Ming Liu, Lei Hu, Pengfei Xu, Kun Zhao, Lingbo Zong, Ranbo Yu, Jun Chen, Xianran Xing. Low temperature molten salt synthesis of perovskite-type ACeO3(A=Sr, Ba) in eutectic NaCl-KCl. Chemical Research in Chinese Universities, 2015, 31(3): 342-346 DOI:10.1007/s40242-015-4330-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pena M. A., Fierro J. L. G. Chem. Rev., 2001, 101(7): 1981.

[2]

Künstler K., Lang H. J., Maiwald A., Tomandl G. Solid State Ionics, 1998, 107(3): 221.

[3]

Schober T., Krug F., Schilling W. Solid State Ionics, 1997, 97(1): 369.

[4]

Yamaguchi S., Nakamura K., Higuchi T. Solid State Ionics, 2000, 136: 191.

[5]

Yajima T., Iwahara H. Solid State Ionics, 1992, 50(3/4): 281.

[6]

Münch W., Kreuer K. D., St. Adams, Seifert G., Maier J. Phase Transitions: A Multinational Journal, 1999, 68(3): 567.

[7]

Esaka T., Sakaguchi H., Kobayashi S. Solid State Ionics, 2004, 166(3): 351.

[8]

Nagamoto H., Shinoda E., Inoue H. Industrial & Engineering Chemistry Research, 1993, 32(8): 1790.

[9]

Meng G., Ma G., Ma Q. Solid State Ionics, 2007, 178(7): 697.

[10]

Hibino T., Hashimoto A., Suzuki M. J. Phys. Chem. B, 2001, 105(46): 11399.

[11]

Scholten J., Schoonman J., van Miltenburg J. C. Solid State Ionics, 1993, 61: 83.

[12]

Iwahara H., Uchida H., Kondo J. Appl. Electrochem., 1983, 13(3): 365.

[13]

Rajesh T., Rajarajan A. K., Gopinath C. S. J. Phys. Chem. C, 2012, 116(17): 9526.

[14]

Yuan Y., Zheng J., Zhang X. Solid State Ionics, 2008, 178(33): 1711.

[15]

Cai J., Laubernds K., Galasso F. S. J. Am. Ceram. Soc., 2005, 88(10): 2729.

[16]

Iwahara H., Uchida H., Tanaka S. J. Appl. Electrochem., 1986, 16(5): 663.

[17]

Mather G. C., Figueiredo F. M., de Paz J. R., García-Martín S. Inorg. Chem., 2008, 47(3): 921.

[18]

Lee D. W., Won J. H., Shim K. B. Mater. Lett., 2003, 57(22): 3346.

[19]

Bhowmick S., Basu J., Xue Y. J. Am. Ceram. Soc., 2010, 93(12): 4041.

[20]

Mather G. C., García-Martín S., Benne D. J. Mater. Chem., 2011, 21(15): 5764.

[21]

Liu Y., Lu Y., Xu M., Zhou L., Shi S. Mater. Chem. Phys., 2009, 114: 37.

[22]

Pei J., Chen G., Li X., Li Y. X., Zhou N. Mater. Lett., 2009, 63: 1459.

[23]

Zhao S., Li Q., Wang L., Zhang Y. Mater. Lett., 2006, 60: 425.

[24]

Cai Z., Xing X., Li L., Xu Y. J. Alloy Comp., 2008, 454: 466.

[25]

Chen J., Xing X., Watson A. Chem. Mater., 2007, 19: 3598.

[26]

Cahn. J. W.; Ed. by Peiser H. S., Crystal Growth, Pergamon Press, Oxford, 1967, 681.

[27]

Saiki A., Seto Y., Seki H. Nippon Kagaku Kaishi, 1991, 1: 25.

[28]

Hoffmann N. Naturwissenschaften, 1934, 22: 206.

[29]

Ranløv J., Nielsen K. J. Mater. Chem., 1994, 4(6): 867.

[30]

Park J. H., Lee D. H., Shin H. S., Lee B. K. J. Am. Ceram. Soc., 1996, 79: 1130.

[31]

Romeo M., Bak K., Fallah J., Normand F. L. Surface and Interface Analysis, 1993, 20: 508.

[32]

Rao M. V. R., Shripathi T. J. Electron Spectrosc. Relat. Phenom., 1997, 87: 121.

[33]

Zhang Y. W., Si R., Liao C. S., Yan C. H. J. Phys. Chem. B, 2003, 107: 10159.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/