Emission and energy transfer characteristics of coumarin 6 molecules doped in opal polymer photonic crystal

Xiaochun Chi , Ning Sui , Yinghui Wang , Lu Zou , Cheng Qian , Hanzhuang Zhang

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 466 -470.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (3) : 466 -470. DOI: 10.1007/s40242-015-4308-y
Article

Emission and energy transfer characteristics of coumarin 6 molecules doped in opal polymer photonic crystal

Author information +
History +
PDF

Abstract

The emission of coumarin 6(C-6) doped in opal polymethylmethacrylate(PMMA) photonic crystal(PC) was effectively manipulated. Meanwhile the energy transfer(ET) of C-6 in PCs, which are infiltrated with sulforhodamine B(S-B), was influenced by the concentration of energy acceptor in solution, the size of PMMA microsphere(SM) and the photonic stop band(PSB). The results should be beneficial to people to further understand the potential application of PCs in optoelectronic fields.

Keywords

Photonic crystal / Energy transfer / Conjugated molecule

Cite this article

Download citation ▾
Xiaochun Chi, Ning Sui, Yinghui Wang, Lu Zou, Cheng Qian, Hanzhuang Zhang. Emission and energy transfer characteristics of coumarin 6 molecules doped in opal polymer photonic crystal. Chemical Research in Chinese Universities, 2015, 31(3): 466-470 DOI:10.1007/s40242-015-4308-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yablonovitch E. Phys. Rev. Lett., 1987, 58(20): 2059.

[2]

John S. Phys. Rev. Lett., 1987, 58(2): 2486.

[3]

Freymann G., Kitaev V., Lotschz B. V., Ozin G. A. Chem. Soc. Rev., 2013, 42(7): 2528.

[4]

Lopez C. Adv. Mater., 2003, 15(20): 1679.

[5]

Zhang H. F., Liu S. B., Li B. X. Ann. Phys. New York, 2014, 347: 110.

[6]

Rybin M. V., Khanikaev A. B., Inoue M., Samusev K. B., Steel M. J., Yushin G., Limonov M. F. Phys. Rev. Lett., 2009, 103(2): 023901.

[7]

Knight J. C., Broeng J., Birks T. A., St P., Russell J. Science, 1999, 284: 181.

[8]

Zhang Y. Q., Wang J. X., Ji Y., Hu W. P., Jiang L., Song Y. L., Zhu D. B. J. Mater. Chem., 2007, 17(1): 90.

[9]

Chen J., Wang M. Chem. Res. Chinese Universities, 2013, 29(3): 584.

[10]

Lodahl P., van Driel A. F., Nikolaev I. S., Irman A., Overgaag K., Vanmaekelberg D. W. L. Nature(London), 2004, 430(7000): 654.

[11]

Li M., Zhang P., Li J. Appl. Phys. B, 2007, 89(2/3): 251.

[12]

Guo L., Yuan L., Peng W., Yuan H. M., Feng S. H. Chem. Res. Chinese Universities, 2012, 28(3): 391.

[13]

Sui N., Wang Y. H., Song Y. F., Wang F. Y., Ma Y. G., Zhang H. Z. Appl. Phys. Express, 2014, 7(2): 025202.

[14]

Kolaric B., Baert K., Auweraer M. V., Vallée R. A. L., Clays K. Chem. Mater., 2007, 19(23): 5547.

[15]

Xu L., Wang J. X., Song Y. L., Jiang L. Chem. Mater., 2008, 20(11): 3554.

[16]

Qian C., Wang Y. H., Song Y. F., Zou L., Ma Y. G., Yang Y. Q., Zhang H. Z. J. Poly. Sci. B, 2014, 52(12): 842.

[17]

Cao L., Jia C. M., Zhang Q., Chen D., Zhang C.Y., Qian Y. Chem. Res. Chinese Universities, 2014, 30(3): 362.

[18]

Nikolaev I. S., Lodahl P., Vos W. L. J. Phys. Chem. C, 2008, 112(18): 7250.

[19]

Park S. H., Xia Y. Langmuir, 1999, 15(1): 266.

[20]

Hiltner P. A., Krieger I. M. J. Phys. Chem., 1969, 73(7): 2386.

[21]

King J. S., Graugnard E., Summers C. J. Appl. Phys. Lett., 2006, 88(8): 081109.

[22]

Vos W. L., Driel H. M. Phys. Lett. A, 2000, 272(1): 101.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/