Studies on the interaction of novel organogermanium sesquioxides with DNA

Shun Ge , Ying Zhao , Beibei Sui , Guoqiang Shangguan

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (1) : 31 -37.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (1) : 31 -37. DOI: 10.1007/s40242-015-4198-z
Article

Studies on the interaction of novel organogermanium sesquioxides with DNA

Author information +
History +
PDF

Abstract

The affinity and mode of interaction of four novel organogermanium sesquioxides with calf thymus DNA(CT-DNA) and two synthetic oligonucleotides, d(AT)22d(AT)22 and d(GC)22d(GC)22, were investigated by a combination of absorption spectroscopy, DNA thermal denaturalization method, viscosity method, fluorometric technique, and competitive binding study with ethidium bromide(EB). The results show that the organogermanium compounds can interact with DNA by intercalation, the binding ability of the compounds to CT-DNA and the synthetic oligonucleotides was found to be modest(in comparison to the proven intercalators), with binding constants on the order of 103–105 L/mol, respectively. Generally, the binding of the organogermanium sesquioxides with naphthalene moiety to DNA is stronger than that of the compounds with anthraquinone moiety. And the compounds with anthraquinone moiety have preference for binding to AT-rich duplexes, whereas the compounds with naphthalene moiety have a little preference for binding to GC-rich duplexes. DNA may be the primary effect target.

Keywords

Organogermanium sesquioxide / DNA / Interaction / Intercalation

Cite this article

Download citation ▾
Shun Ge, Ying Zhao, Beibei Sui, Guoqiang Shangguan. Studies on the interaction of novel organogermanium sesquioxides with DNA. Chemical Research in Chinese Universities, 2015, 31(1): 31-37 DOI:10.1007/s40242-015-4198-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tsutsui M, Kakimoto N, Axtell D D, Oikawa H, Asai K. J. Am. Chem. Soc., 1976, 98: 8287.

[2]

Suzuki F. Cancer and Chemotherapy, 1985, 12: 1445.

[3]

Aso H, Suzuki F, Ebina T, Ishida N. J. Biol. Response Mod., 1989, 8: 180.

[4]

Suzuki F, Brutkiewicz R R, Pollard R B. Br. J. Cancer., 1985, 52: 757.

[5]

Suzuki F, Brutkiewicz R R, Pollard R B. Anticancer Res., 1985, 5: 479.

[6]

Nakamura K, Nomoto K, Osawa T, Takahashi Y, Akiba M, Kakimoto N. J. Chem. Soc. Japan, 1994, 307.

[7]

Shangguan G Q, Xing F F, Qu X G, Mao J H, Zhao D, Zhao X J, Ren J S. Bioorg. Med. Chem. Lett., 2005, 15(12): 2962.

[8]

Zhang C L, Li T H, Niu S H, Wang R F, Fu Z L, Guo F Q, Yang M. Bioinorg. Chem. Appl., 2009, 2009(2): 1.

[9]

Choi S, Oh C, Han J, Park J. Eur. J. Med. Chem., 2010, 45(4): 1654.

[10]

Yang F, Jin H, Pi J, Jiang J H, Liu L, Bai H H, Yang P H, Cai J Y. Bioorg. Med. Chem. Lett., 2013, 23(20): 5544.

[11]

Shangguan G Q, Huang L L, Qu X G. Chin. Chem. Lett., 2007, 18(11): 1347.

[12]

Chen G J, Qiao X, Qiao P Q, Xu G J, Xu J Y, Tian J L, Gu W, Liu X, Yan S P. J. Inorg. Biochem., 2011, 105: 119.

[13]

Zuber G, Quada J C, Hecht S M. J. Am. Chem. Soc., 1998, 120: 9368.

[14]

Hurley L H, Boyd F L. Trends Pharmacol. Sci., 1988, 11: 402.

[15]

Gottesfeld J M, Neely L, Trauger J W, Baird E E, Dervan P B. Nature, 1997, 387: 202.

[16]

Chaires J B. Curr. Opin. Struct. Biol., 1998, 3: 314.

[17]

Wolkenberg S E, Boger D L. Chem. Rev., 2002, 102: 2477.

[18]

Wells R D, Larson J E, Grant R C, Shortle B E, Cantor C R. J. Mol. Biol., 1970, 54: 465.

[19]

Borer P N, Fasman G D. Handbook of Biochemistry and Molecular Biology, Nucleic Acids, 3rd Ed., 1975, Boca Raton: CRC Press 589.

[20]

Bailly C, Qu X G, Graves D E, Prudehomme M, Chaires J B. Chem. Biol., 1999, 6: 277.

[21]

Bailly C, Qu X G, Chaires J B, Colson P, Houssier C, Ohkubo M, Nishimura S, Yoshinari T. J. Med. Chem., 1999, 42(15): 2927.

[22]

Job P. Ann. Chim., 1928, 9: 113.

[23]

Wang K, Lin X, Wan X, Jia T, Zhang X L, Zhang H, Ju X L. Chem. J. Chinese Universities, 2012, 33(12): 2663.

[24]

Li J F, Shi W T, Han X Y, Dong C, Choi M M F. Chem. Res. Chinese Universities, 2012, 28(4): 614.

[25]

Zhang G W, Zhang Y P, Zhang Y, Li Y. Sensors and Actuators B: Chemical, 2013, 182: 453.

[26]

Kumar C V, Asuncion E H. J. Am. Chem. Soc., 1993, 115: 8547.

[27]

Kelly T M, Tossi A B, McConnell D J, Strekas T C. Nucleic Acid Res., 1985, 13(17): 6017.

[28]

Long E C, Bart J K. Acc. Chem. Res., 1990, 23(9): 271.

[29]

Heater S J, Carrano M W, Rains D, Walter R B. Inorg. Chem., 2000, 39: 3881.

[30]

Goossens J F, Bencteux E B, Houssin R. Biochemistry, 2001, 40: 4663.

[31]

Satyanarayana S, Dabrowiak J C, Chaires J B. Biochemistry, 1992, 31(39): 9319.

[32]

Reynisson J, Schuster G B, Howeerton S B, Williams L D, Barnett R N, Cleveland C L, Landman U, Harrit N, Chaires J B. J. Am. Chem. Soc., 2003, 125(8): 2072.

[33]

Satyanara Y S, Dabrowiak J C, Chairs J B. Biochemistry, 1993, 32: 2573.

[34]

Cohen G., Eisenberg H., Biopolymers, 1968, 6(8), 1077.

[35]

Cohen G., Eisenberg H., Biopolymers, 1969, 8(1), 45.

[36]

Lenman L S. J. Mol. Biol., 1961, 3: 18.

[37]

Pecq J B L, Paoletti C A. J. Mol. Biol., 1967, 27: 87.

[38]

Ihmels H, Otto D. Topics in Current Chemistry, 2005, 258: 161.

[39]

Tian Z Y, Zhao Z H, Zang F L, Wang Y Q, Wang C J. Journal of Photochemistry and Photobiology B: Biology, 2014, 138: 202.

[40]

Ma Y D, Pan J H, Zhang G W, Zhang Y. Journal of Photochemistry and Photobiology B: Biology, 2013, 126: 112.

[41]

Wang Q, Yang Z Y, Qi G F, Qin D D. Eur. J. Med. Chem., 2009, 44: 2425.

[42]

Skyrianou K C, Raptopoulou C P, Psycharis V, Kessissoglou D P, Psomas G. Polyhedron, 2009, 28: 3265.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/