Structure, thermal behavior and characterization of a new hybrid iron fluoride FeF4(2,2′-bipyridine)(H2O)2

Mouna Smida , Hager Litaiem , Mohamed Dammak , Santiago Garcia-Granda

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (1) : 16 -20.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (1) : 16 -20. DOI: 10.1007/s40242-015-4171-x
Article

Structure, thermal behavior and characterization of a new hybrid iron fluoride FeF4(2,2′-bipyridine)(H2O)2

Author information +
History +
PDF

Abstract

New crystal of FeF4(2,2′-bipyridine)(H2O)2 was prepared by hydrothermal synthesis. Crystalline structure determination is performed from single crystal X-ray diffraction data. The unit cell is monoclinic space group P21/n, with cell parameters a=0.9046(5) nm, b=0.7502(5) nm, c=1.9539(5) nm, β=93.307(5)°, V=1.3238(12) nm3 and Z=4. The structure of FeF4(2,2′-bipyridine)(H2O)2 is built up from FeF4N2 octahedra coordinated by two nitrogen atoms of the 2,2′-bipyridine molecules, and four fluorine atoms as well as uncoordinated H2O molecules. Thermal analysis of the title compound showed that the decomposition introduced four steps. IR spectra confirmed the presence of 2,2′-bipyridine molecules. The optical absorption was measured at the corresponding λ max using UV-Vis diffuse reflectance spectrum.

Keywords

Hydrothermal synthesis / Hybrid / Iron fluoride

Cite this article

Download citation ▾
Mouna Smida, Hager Litaiem, Mohamed Dammak, Santiago Garcia-Granda. Structure, thermal behavior and characterization of a new hybrid iron fluoride FeF4(2,2′-bipyridine)(H2O)2. Chemical Research in Chinese Universities, 2015, 31(1): 16-20 DOI:10.1007/s40242-015-4171-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Touret J, Bourdon X, Leblanc M, Retoux R, Renaudin J, Maisonneuve V. J. Fluorine Chem., 2001, 110: 133.

[2]

Smida M, Lhoste J, Pimenta V, Hémon-Ribaud A, Jouffret L, Leblanc M, Dammak M, Grenèche J M, Maisonneuve V. Dalton Trans., 2013, 42: 15748.

[3]

Liu J Q, Wang Y Y, Zhang Y N, Liu P, Shi Q Z, Battern R. Eur. J. Inorg. Chem., 2009, 1: 147.

[4]

Su Z, Fan J, Okamura T, Sun Y W, Ueyama N. Cryst. Growth. Des., 2010, 10: 3515.

[5]

Sanchez C, Ribot F. New J. Chem., 1994, 18: 1007.

[6]

Férey G. L’actualité Chimique, 2007, 304: 3.

[7]

Adil K, Leblanc M, Maisonneuve V, Lightfoot P. Dalton Trans., 2010, 39: 5983.

[8]

Collins D J, Zhou H C. J. Mater. Chem., 2007, 17: 3154.

[9]

Gandara F, Gomez-Lor B, Gutierrez-Puebla Iglesias E, Monge M A, Proserpio D M, Snejko N. Chem. Mater., 2008, 20: 72.

[10]

Halper S R, Do L, Stork J R, Cohen S M. J. Am. Chem. Soc., 2006, 128: 15255.

[11]

Ye Q, Fu D W, Tian H, Xiong R G, Chan P W H, Huang S P D. Inorg. Chem., 2008, 47: 772.

[12]

Zhang J P, Lin Y Y, Huang X C, Chen X M. J. Am. Chem. Soc., 2005, 127: 5495.

[13]

Férey G, Millange F, Morcrette M, Serre C, Doublet M, Grenéche J M, Tarascon J M. Angew. Chem., 2007, 46: 3259.

[14]

Sheldrick G M. SHELXS 97, Program for the Solution of Crystal Structures, 1997, Göttingen: University of Göttingen.

[15]

Sheldrick G M. SHELXL 97, Program for the Solution of Crystal Structures, 1997, Göttingen: University of Göttingen.

[16]

Farrugia L J. J. Appl. Cryst., 1999, 32: 837.

[17]

Brandenburg K, Berndt M. Crystal Impact, Diamond, Version 2.1.b, 1999, Bonn: GbR.

[18]

Vargas W E. J. Opt. A: Pure Appl. Opt., 2002, 4: 452.

[19]

Kubelka P. Part I, J., Opt. Soc. Am., 1948, 38: 448.

[20]

Liu H X. Acta Cryst., 2009, E65: 1093.

[21]

Czakis-Sulikowska D, Katuzna-Czapliñska J. J. Ther. Ana. Calor., 2000, 62: 821.

[22]

Niven M L, Percy G C. Transition Met. Chem., 1978, 3: 267.

[23]

Strukl J S, Walter J L. Spectrochimica Acta, 1971, 27A: 223.

[24]

Cotton S A. Coord. Chem. Rev., 1972, 8: 185.

[25]

Han Z, Guo J, Li W. Chem. Eng. J., 2013, 228: 36.

[26]

Cheetham A K, Rao C N R, Feller R K. Chem. Commun., 2006, 4780.

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/