Impact of stable protein-protein interaction on protein conformational space

Wenzhao Li , Wei Meng , Pu Tian

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (1) : 149 -155.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (1) : 149 -155. DOI: 10.1007/s40242-015-3402-5
Article

Impact of stable protein-protein interaction on protein conformational space

Author information +
History +
PDF

Abstract

Backbone dihedral angle based clustering approach was applied to investigate the effect of protein complexation on backbone conformational space and the effect on protein dynamics. Three representative enzyme-inhibitor complexes and their comprised proteins were used as models for small- and moderate-sized globular proteins to compare available backbone conformational space before and after complexation. Microsecond time scale molecular dynamic simulations were generated to ensure sufficient statistics. The result suggests that stable protein-protein interactions lead to redistribution of protein backbone mobility and restriction of the protein backbone conformational space, especially for short time scale motions. Surprisingly, these effects are found to be uncorrelated with protein-protein interaction surface. Consistent with many experimental and computational observations, our results indicate that both induced-fit and conformational selection models play roles in stable protein complexation process, with the dominant role being different for different protein complexes.

Keywords

Protein-protein interaction / Conformational space / Backbone dynamics / Molecular dynamics simulation

Cite this article

Download citation ▾
Wenzhao Li, Wei Meng, Pu Tian. Impact of stable protein-protein interaction on protein conformational space. Chemical Research in Chinese Universities, 2015, 31(1): 149-155 DOI:10.1007/s40242-015-3402-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Changeux J P, Edelstein S J. Science, 2005, 308(5727): 1424.

[2]

Cascante M, Boros L G, Comin-Anduix B, de Atauri P, Centelles J J, Lee P W. Nat. Biotechnol., 2002, 20(3): 243.

[3]

Yanagida M. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci., 2002, 771(1/2): 89.

[4]

Kar G, Kuzu G, Keskin O, Gursoy A. Current Pharmaceutical Design, 2012, 18(30): 4697.

[5]

Hase T, Tanaka H, Suzuki Y, Nakagawa S, Kitano H. PLoS Comput. Biol., 2009, 5(10): e1000550.

[6]

Fraser J S, Clarkson M W, Degnan S C, Erion R, Kern D, Alber T. Nature, 2009, 462(7273): 669.

[7]

Koshland D E. Proc. Natl. Acad. Sci. USA, 1958, 44(2): 98.

[8]

Tsai C J, Kumar S, Ma B, Nussinov R. Protein Sci., 1999, 8(6): 1181.

[9]

Tsai C J, Ma B, Nussinov R. Proc. Natl. Acad. Sci. USA, 1999, 96(18): 9970.

[10]

Silva D A, Bowman G R, Sosa-Peinado A, Huang X. PLoS Comput. Biol., 2011, 7(5): e1002054.

[11]

Wlodarski T, Zagrovic B. Proc. Natl. Acad. Sci. USA, 2009, 106(46): 19346.

[12]

Csermely P, Palotai R, Nussinov R. Trends Biochem. Sci., 2010, 35(10): 539.

[13]

Jones S, Thornton J M. Proc. Natl. Acad. Sci. USA, 1996, 93(1): 13.

[14]

Yang S P, Han L J, Pan Y, Wang N N, Wang T. Chem. Res. Chinese Universites, 2013, 34(2): 364.

[15]

Lasters I, Desmet J, De Maeyer M. J. Protein. Chem., 1997, 16(5): 449.

[16]

Levitt M. J. Mol. Biol., 1992, 226(2): 507.

[17]

Feldman H J, Hogue C W. Proteins—Structure Function and Genetics, 2002, 46(1): 8.

[18]

Shenkin P S, Farid H, Fetrow J S. Proteins—Structure Function and Genetics, 1996, 26(3): 323.

[19]

Elber R, Karplus M. Science, 1987, 235(4786): 318.

[20]

Bruccoleri R E, Karplus M. Biopolymers, 1990, 29: 1847.

[21]

Sullivan D C, Aynechi T, Voelz V A, Kuntz I D. Biophys. J., 2003, 85(1): 174.

[22]

Sullivan D C, Kuntz I D. Proteins—Structure Function and Genetics, 2001, 42(4): 495.

[23]

Grunberg R, Nilges M, Leckner J. Structure, 2006, 14(4): 683.

[24]

Boehr D D, Nussinov R, Wright P E. Nat. Chem. Biol., 2009, 5(11): 789.

[25]

Zídek L, Novotny M V, Stone M J. Nat. Struct. Biol., 1999, 6(12): 1118.

[26]

Sullivan D C, Kuntz I D. Biophys. J., 2004, 87(1): 113.

[27]

Tidor B, Karplus M. J. Mol. Biol., 1994, 238(3): 405.

[28]

Ngounou W A G, Sokolowska I, Woods A G, Roy U, Loo J A, Darie C C. Proteomics, 2013, 13(3/4): 538.

[29]

England P M, Zhang Y, Dougherty D A, Lester H A. Cell, 1999, 96(1): 89.

[30]

Dill K A. Biochemistry, 1990, 29(31): 7133.

[31]

Gutteridge A, Thornton J. J. Mol. Biol., 2005, 346(1): 21.

[32]

Yin S, Ding F, Dokholyan N V. Structure, 2007, 15(12): 1567.

[33]

Zhu Q K, Zhu M L, Zou J X, Feng P C, Fan G T, Liu Z B, Wang W J. Chem. Res. Chinese Universities, 2013, 29(6): 1153.

[34]

Xue X G, Zhao L, Lu Z Y, Qian H J. Chem. Res. Chinese Universities, 2013, 29(2): 366.

[35]

Wu Y, Gao L X, Han F S. Chem. Res. Chinese Universites, 2014, 30(4): 587.

[36]

Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H, Shindyalov I N, Bourne P E. Nucleic Acids Res., 2000, 28(1): 235.

[37]

Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L, Schulten K. Journal of Computational Chemistry, 2005, 26(16): 1781.

[38]

Brooks B R, Brooks C L, Karplus M. Journal of Computational Chemistry, 2009, 30(10): 1545.

[39]

Caves L S, Evanseck J D, Karplus M. Protein Sci., 1998, 7(3): 649.

[40]

Zhao L, Li W, Tian P. PloS One, 2013, 8(4): e60533.

[41]

Changeux J P, Edelstein S. F1000 Biol. Rep., 2011, 3: 19.

[42]

Wang W, Ye W, Yu Q, Jiang C, Zhang J, Luo R, Chen H F. J. Phys. Chem. B, 2013, 117(17): 4912.

[43]

Zhou H X. Biophys. J., 2010, 98(6): L15.

[44]

Wallnoefer H G, Lingott T, Gutierrez J M, Merfort I, Liedl K R. J. Am. Chem. Soc., 2010, 132(30): 10330.

[45]

Archakov A I, Govorun V M, Dubanov A V, Ivanov Y D, Veselovsky A V, Lewi P, Janssen P. Proteomics, 2003, 3: 380.

[46]

Wells J A, McClendon C L. Nature, 2007, 450: 1001.

[47]

Forman-Kay J D. Nat. Struct. Biol., 1999, 6(12): 1086.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/