Theoretical studies on dielectric breakdown strength increasing mechanism of SF6 and its potential alternative gases

Hui Zhang , Yan Shang , Qingguo Chen , Baozhong Han

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (1) : 123 -129.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (1) : 123 -129. DOI: 10.1007/s40242-014-4255-z
Article

Theoretical studies on dielectric breakdown strength increasing mechanism of SF6 and its potential alternative gases

Author information +
History +
PDF

Abstract

A theoretical investigation on the dielectric insulation mechanism of sulfur hexafluoride(SF6) and its potential alternative gases at the atomic and molecular levels was made. The electronic structures of the molecules of them were calculated at the B3LYP/6-311+G(d,p) level. The HOMO-LUMO energy gaps, ionization potentials, electron affinities, and dipole moments of the studied molecules at the ground state were obtained. The 11 isomerization reactions, with the harmonic vibration frequencies of the equilibrium geometries and the minimum energy path by the intrinsic reaction coordinate theory, were also obtained at the same level. The results show that the insulation gas, with the larger HOMO-LUMO energy gap, the higher ionization potential and the stronger electron affinity, can increase the dielectric breakdown strength efficiently, which is in good agreement with the available experimental finding. We suggested that the molecule with isomerization reaction occurring can dissipate the energy of hot electrons availably, which is favorable to the dielectric breakdown strength increasing for the SF6 potential alternative gas.

Keywords

Dielectric breakdown strength / Sulfur hexafluoride / Transition state / Mechanism

Cite this article

Download citation ▾
Hui Zhang, Yan Shang, Qingguo Chen, Baozhong Han. Theoretical studies on dielectric breakdown strength increasing mechanism of SF6 and its potential alternative gases. Chemical Research in Chinese Universities, 2015, 31(1): 123-129 DOI:10.1007/s40242-014-4255-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Misra A. Plasma Cleaning and Etching Methods Using Non-global-warming Compounds, 2001.

[2]

Miller T M, Miller A E S, Paulson J F, Liu X. J. Chem. Phys., 1994, 100: 8841.

[3]

Goto H H, Harshbarger W R, Shang Q Y. Fluorine Process for Cleaning Semiconductor Process Chamber, 2005.

[4]

Wuebbles D. Annual Review Energy Environment, 1995, 20: 45.

[5]

Qiu Y, Feng Y P. Electrical Insulation, 1996, 2: 766.

[6]

Luly M H, Richard R G. Gaseous Dielectrics with Low Global Warming Potentials, 2008.

[7]

Christophorou L G, Olthoff J K, van Brunt R J. IEEE Electrical Insulation Magazine, 1997, 13: 20.

[8]

Blair D. T. A.; Eds.: Meek J. M., Craggs J. D., Electrical Breakdown of Gases, John Wiley and Sons, Chichester, 1978, 533.

[9]

Holmes R R. Pentacoordinated Phosphorus, 1980, 2: 188.

[10]

Senning A. Sulfur in Organic and Inorganic Chemistry, 1982, 2: 143.

[11]

Ralph E, Weston R E Jr. J. Phys. Chem., 1995, 99: 13150.

[12]

McCarty L S, Winkleman A, Whitesides G M. J. Am. Chem. Soc., 2007, 129: 4075.

[13]

Truong T N, Duncan W T, Bell R L. Chemical Applications of Density-Functional Theory, 1996, Washington DC: American Chemical Society 85.

[14]

Wang X, Qian P. Chem. J. Chinese Universities, 2013, 34(11): 2601.

[15]

Liu N N, Ding Y H. Chem. J. Chinese Universities, 2012, 33(9): 2043.

[16]

Wu N N, Liu H X, Duan X M, Liu J Y. Chem. Res. Chinese Universities, 2012, 28(1): 147.

[17]

Lee C, Yang W, Parr R G. Phys. Rev. B, 1988, 37: 785.

[18]

Miehlich B, Savin A, Stoll H, Preuss H. Chem. Phys. Lett., 1989, 157: 200.

[19]

Becke A D. J. Chem. Phys., 1993, 98: 5648.

[20]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr., Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian 09, Revision A.02, 2009, Wallingford CT: Gaussian Inc.

[21]

Hammond G S. J. Am. Chem. Soc., 1955, 77: 334.

[22]

Lias S G, Bartmess J E. NIST ChemistryWebBook, 2013.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/