Electrospinning synthesis and photoluminescence properties of SnO2:xEu3+ nanofibers

Yipeng Gu , Hongzhi Shen , Liang Li , Wenqiang Liu , Wenquan Wang , Dapeng Xu

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (6) : 879 -884.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (6) : 879 -884. DOI: 10.1007/s40242-014-4252-2
Article

Electrospinning synthesis and photoluminescence properties of SnO2:xEu3+ nanofibers

Author information +
History +
PDF

Abstract

SnO2:xEu3+(x=0, 1%, 3%, 5%, molar fraction) fibers were synthesized by electrospinning technology. The size of the as-prepared fibers is relatively uniform and the average diameter is about 200 nm with a large draw ratio. The as-prepared Eu3+ doped SnO2 nanofibers have a rutile structure and consist of crystallite grains with an average size of about 10 nm. A slight red shift of the A 1g and B 2g vibration modes and an additional peak at 288 nm were observed in the Raman spectra of the nanofibers. The energies of bandgaps of the SnO2 nanofiber with Eu doping of 1% and 3% are 2.64 eV, and the energy of bandgap is 2.94 eV with Eu doping of 5%(molar fraction). There is only orange emission(5 D 07 F 1 magnetic dipole transition) for Eu doped SnO2 nanofibers, and no red emission could be observed. The orange emission upon indirect excitation splits into three peaks and the peak intensity at the excitation wavelength of 275 nm is higher than that at the excitation wavelength of 488 nm.

Keywords

Electrospinning / SnO2 / Eu3+ doping / Nanofiber / Photoluminescence

Cite this article

Download citation ▾
Yipeng Gu, Hongzhi Shen, Liang Li, Wenqiang Liu, Wenquan Wang, Dapeng Xu. Electrospinning synthesis and photoluminescence properties of SnO2:xEu3+ nanofibers. Chemical Research in Chinese Universities, 2014, 30(6): 879-884 DOI:10.1007/s40242-014-4252-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Park J A, Moon J, Lee S J, Lim S C, Zyung T. Curr. Appl. Phys., 2009, 9: S210.

[2]

Doh S J, Kim C, Lee S G, Lee S J, Kim H. J. Hazard. Mater., 2008, 154: 118.

[3]

Lim S K, Hwang S H, Chang D, Kim S. Sens. Actuators B Chem., 2010, 149: 28.

[4]

Chaudhari S, Srinivasan M. J. Mater. Chem., 2012, 22: 23049.

[5]

Wang W, Huang H, Li Z. J. Am. Ceram Soc., 2008, 91(11): 3817.

[6]

Wang W, Yuan Q, Chi Y, Shao C L, Li N, Li X T. Chem. Res. Chinese Universities, 2012, 28(4): 727.

[7]

Shao C L, Guan H Y, Liu Y C, Li X L, Yang X H. J. Solid State Chem., 2004, 177(7): 2628.

[8]

Chuai H Y, Zhou D F, Zhu X F, Yang G C, Li Z H. Chem. J. Chinese Universities, 2014, 35(5): 941.

[9]

Zhang Y, Kolmakov A, Chretien S, Metiu H, Moskovits M. Nano Lett., 2004, 4: 403.

[10]

Ferrere S, Zaban A, Gsegg B A. J. Phys. Chem. B, 1997, 101: 4490.

[11]

Wang C, Appleby A J, Little F E. Solid State Ionics, 2002, 13: 147.

[12]

Shen G, Chen P C, Ryu K M, Zhou C W. J. Mater. Chem., 2009, 19: 828.

[13]

Park M S, Wang G X, Kang Y M, Wexler D, Dou S X, Liu H K. Angew. Chem. Int. Ed., 2007, 46: 750.

[14]

Zhang G D, Liu N, Ren Z Y, Yang B. J. Nanomater., 2011, 2011: 526094-1.

[15]

Ye J F, Zhang H J, Yang R, Li X G, Qi L. Small, 2010, 6: 296.

[16]

Xu C H, Sun J, Gao L. J. Mater. Chem., 2012, 22: 975.

[17]

Kim I D, Jeon E K, Choi S H, Choi D K, Tuller H L. J. Electroceram., 2010, 25: 159.

[18]

Cao J, Zhang T, Li F, Yang H, Liu S. New J. Chem., 2013, 37: 2031.

[19]

Lee B S, Kim W S, Kim D H, Kim H C, Hong S H, Yu W R. Smart Mater. Struct., 2011, 20: 105019-1.

[20]

Jiang C, Zhang G, Wu Y, Li L, Shi K. CrystEngComm, 2012, 14: 2739.

[21]

Kim W S, Lee B S, Kim D H, Kim H C, Yu W R, Hong S H. Nanotechnology, 2010, 21: 245605-1.

[22]

Huang H M, Zhang S Q, Wang W, Wang C, Yu J. Chem. J. Chinese Universities, 2012, 33(7): 1619.

[23]

Luo S H, Fan J Y, Liu W L, Zhang M, Song Z T, Lin C L, Wu X L, Chu P. Nanotechnology, 2006, 17: 1695.

[24]

Shen H Z, Feng S, Wang Y, Gu Y P, Zhou J, Yang H, Feng G L, Li L, Wang W Q, Liu X Y, Xu D P. J. Alloy Compd., 2013, 550: 531.

[25]

Shen H Z, Liu R R, Zhou J, Yang M, Gu Y P, Yang H, Wang W Q, Xu D P. Phys. Status Solidi A, 2013, 210(9): 1839.

[26]

Fu X Y, Zhang H W, Niu S Y, Xin Q. J. Solid State Chem., 2005, 178: 603.

[27]

Zeferino R S, Pal U, Melendrez R, Duran-Munoz H A, Barboza Flores M. J. Appl. Phys., 2013, 113: 064306-1.

[28]

Chang S S, Jo M S. Ceram. Int., 2007, 33: 511.

[29]

Chen J T, Wang J, Zhang F, Yan D, Zhang G G, Zhuo R F, Yan P X. J. Phys. D: Appl. Phys., 2008, 41: 105306-1.

[30]

Sarmah S, Kumar A. Indian J. Phys., 2010, 84(9): 1211.

[31]

Nogami M, Enomoto T, Hayakawa T. J. Lumin., 2002, 97: 147.

[32]

Moon T, Hwang S T, Jung D R, Son D, Kim C, Kim J, Kang M, Park B. J. Phys. Chem. C, 2007, 111: 4164.

[33]

Bazargan S, Leung K T. J. Chem. Phys., 2012, 137: 184704.

[34]

Sundaram K B, Bhagavat G K. J. Phys. D: Appl. Phys., 1981, 14: 921.

[35]

Morais E A, Scalvi L V A, Tabata A, Oliveira J B B D, Ribeiro S J L. J. Mater. Sci., 2008, 43: 345.

[36]

Wang H K, Wang Y, Kershaw S V, Hung T F, Xu J, Rogach A L. Part. Part. Syst. Charact., 2013, 30: 332.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/