Facile fabrication and optical properties of nanostructural PbSe films

Meng Liu , Xiaofei Qi , Xionggang Wu , Hengning Zhang

Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (6) : 987 -990.

PDF
Chemical Research in Chinese Universities ›› 2014, Vol. 30 ›› Issue (6) : 987 -990. DOI: 10.1007/s40242-014-4199-3
Article

Facile fabrication and optical properties of nanostructural PbSe films

Author information +
History +
PDF

Abstract

PbSe films with different nanostructures, such as nanoparticles, nanohollows and hierarchical structures, can be synthesized by adjusting the current density and the reaction temperature via a convenient and efficient electrochemical route in the absence of hard template and surfactant. The calculated band gaps of the prepared PbSe nanoparticles and nanohollows were about 0.32 and 0.43 eV, respectively. This suggests that quantum size effect in nanohollows greatly influences their band gap. This preparation method possesses remarkable advantages, such as low cost, high efficiency and easy preparation, which are very suitable for preparing nanomaterials.

Keywords

Thin film / PbSe / Electrodeposition / Nanostructural material / Optical property

Cite this article

Download citation ▾
Meng Liu, Xiaofei Qi, Xionggang Wu, Hengning Zhang. Facile fabrication and optical properties of nanostructural PbSe films. Chemical Research in Chinese Universities, 2014, 30(6): 987-990 DOI:10.1007/s40242-014-4199-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luther J M, Law M, Beard M C, Song Q, Reese M O, Ellingson R J, Nozik A J. Nano Lett., 2008, 8: 3488.

[2]

Wise F W. Acc. Chem. Res., 2000, 33: 773.

[3]

Khanna P K, Singh N, Charan S, Viswanath A K, Patil K R. Mater. Res. Bull., 2007, 42: 1414.

[4]

Baek I C, Seok S I, Pramanik N C, Jana S, Lim M A, Ahn B Y, Lee C J, Jeong Y J. J. Colloid Interf. Sci., 2007, 310: 163.

[5]

Moreels I, Fritzinger B, Martins J C, Hens Z. J. Am. Chem. Soc., 2008, 130: 15081.

[6]

Chen S T, Zhang X L, Hou X M, Zhou Q, Tan W H. Cryst. Growth Des., 2010, 10: 1257.

[7]

Schaller R D, Agranovich V M, Klimov V C. Nat. Phys., 2005, 1: 189.

[8]

Prabahar S, Suryanarayanan N, Rajasekar K, Srikanth S. Chalcogenide Letters, 2009, 6: 227.

[9]

Arivazhagan V, Parvathi M M, Rajesh S. Archives of Physics Research, 2011, 2: 48.

[10]

Ma D W, Cheng C. Journal of Alloy and Compounds, 2011, 509: 6595.

[11]

Hodes G. Physical Chemistry Chemical Physics, 2007, 9: 2181.

[12]

Ivanova Y A, Ivanou D K, Streltsov E A. Electrochim. Acta, 2008, 53: 5051.

[13]

Aradilla D, Estrany F, Aleman C. J. Phys. Chem. C, 2011, 115: 8430.

[14]

Gudavarthy R V, Gorantla S, Mu G J, Kulp E A, Gemming T, Eckert J, Switzer J A. Chem. Mater., 2011, 23: 2017.

[15]

Chen L Y, Tang Y H, Wang K, Liu C B, Luo S L. Electrochem. Comm., 2011, 13: 133.

[16]

Yao C Z, Tong Y X, Ma H X, Gong Q J, Meng L X, Yao J H, Xia D C. J. Electrochem. Soc., 2010, 157: D503.

[17]

Li X, Li J H, Li S J, Fang X, Fang F, Chu X Y, Wang X H, Hu J X. Chem. Res. Chinese Universities, 2013, 29(6): 1032.

[18]

Li Y Y, Rao L, Jiang Y X, Liu Z L, He C L, Zhang B W, Sun S G. Chem. J. Chinese Universities, 2013, 34(2): 408.

[19]

Li G R, Yao C Z, Lu X H, Zheng F L, Feng Z P, Yu X L, Su C Y, Tong Y X. Chem. Mater., 2008, 20: 3306.

[20]

Fukami K, Nakanishi S, Yamasaki H, Tada T, Sonoda K, Kamikawa N, Tsuji N, Sakaguchi H, Nakato Y. J. Phys. Chem. C, 2007, 111: 1150.

[21]

Luca V, Djajanti S, Howe R F. J. Phys. Chem. B, 1998, 10: 10650.

AI Summary AI Mindmap
PDF

212

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/